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Abstract

In this paper we consider the problem of visual saliency

modeling, including both human gaze prediction and salient

object segmentation. The overarching goal of the paper

is to identify high level considerations relevant to deriving

more sophisticated visual saliency models. A deep learn-

ing model based on fully convolutional networks (FCNs) is

presented, which shows very favorable performance across

a wide variety of benchmarks relative to existing proposals.

We also demonstrate that the manner in which training data

is selected, and ground truth treated is critical to resulting

model behaviour. Recent efforts have explored the relation-

ship between human gaze and salient objects, and we also

examine this point further in the context of FCNs. Close ex-

amination of the proposed and alternative models serves as

a vehicle for identifying problems important to developing

more comprehensive models going forward.

1. Introduction

The past decade has seen numerous developments in

modeling visual saliency, including introduction of a wide

variety of models, many new and larger datasets, and a bet-

ter understanding of metrics that are most appropriate for

measuring model performance. Additionally, the notion of

saliency has broadened such that several distinct problems

are treated as problems of modeling saliency, including gaze

prediction, salient object segmentation, and objectness mea-

sures [2] respectively. Many domains of computer vision

have benefitted from deep learning, and it is natural to con-

sider that value of deep learning models in saliency predic-

tion. Preliminary efforts of this variety suggest that there

may also be significant benefits to deep learning for visual

saliency prediction [19]. One contribution of this paper is

a deep learning model for visual saliency prediction based

on fully convolutional networks [23]. While the principal

focus of this work is on gaze prediction, we also consider

the problem of salient object segmentation and further ex-

plore the relationship between salient objects and human

gaze patterns.

Given the vast array of developments in visual saliency

prediction of late, there is value in taking account of where

models currently stand in their capabilities, and where im-

provements might be made. This consideration is especially

timely given that the choice of data is critical to how deep

learning models will ultimately behave, and their capabili-

ties will be determined in part by the relative balance of dif-

ferent types of patterns and concepts expressed in the data.

Aside from the proposed deep learning model that is pro-

posed, in our view this paper carries two additional and im-

portant contributions:

1. Data and ground truth: The manner in which data is

selected, ground truth created, and performance assessed

(e.g. loss function) are critical to the problem. We there-

fore place a heavy emphasis on examining this issue, and

reveal nuances of the problem critical to treating gaze pre-

diction using neural networks. This problem is introduced

in section 2 and explored in detail in section 3. Supporting

benchmark results are presented in section 4 of the paper.

2. Failures and shortcomings: Equally important to reveal-

ing what models grounded in deep learning can do well, is

revealing what they cannot do well. To this end, we dedi-

cate a significant portion of our analysis and discussion to

revealing current challenges and suggestions for overcom-

ing these challenges. These issues are explored in section

5.

Overall, the experimentation that is included reveals a

number of issues important to any work involving the inter-

section of saliency with deep learning, and remaining chal-

lenges and possible paths forward are summarized in sec-

tion 6.

2. Methods

In this section, we describe the models we have consid-

ered and evaluation methodology. This includes the struc-
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Figure 1. A high-level overview of the FUCOS architecture. Pa-

rameters in the legend are as follows: K corresponds to kernel

dimensions, S to stride, N to number of outputs, % to the percent

of dropout units.

ture of FCNs used in experimentation and considerations

relevant to benchmarking.

2.1. Models

In recent years, there has been tremendous progress in

certain areas of computer vision built on the success of deep

learning. Problems that prescribe a pixel level labeling at

the output such as semantic segmentation have shared in this

success [12]. In the paper, we explore the extent to which

saliency prediction may benefit from a similar treatment.

This is inspired in part by the apparent benefits of leveraging

semantics in the context of saliency prediction. To this end,

we present a model deemed Fully Convolutional Saliency

(FUCOS), that is applied to either gaze, or salient object
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Figure 2. Area under ROC curve for the FUCOS model corre-

sponding to different ground truth thresholds, and with (N) or

without (S) center-biased based normalization.

prediction. For some experiments involving salient object

segmentation, we also consider an alternative model based

on deconvolutional neural networks [26] for comparison.

FUCOS shares a similar structure to models that have

had success in addressing the problem of semantic segmen-

tation including the family of FCN networks presented by

Long et al. [23]. A simple schematic of the FUCOS net-

work employed for most of the experimentation in the paper

is presented in Figure 1.

Model weights for layers matching the Long et al. ar-

chitecture [23] were initialized to those derived from train-

ing an 8 pixel prediction stride FCN on PASCAL-Context.

Remaining layers were assigned random weights subject to

Xavier initialization [14]. The initial learning rate was set

to 10−14, with weights decreasing by a step γ = 0.1 ev-

ery 10k iterations. 80k total iterations were used to train

each version of the model appearing in results and bench-

mark metrics. Note that versions specific to salient object

segmentation (and not gaze) are introduced later on in sec-

tion 4. These are referred to as SAL-FCN and SAL-DC to

distinguish from the gaze based cases.

2.2. Evaluation

The problem of evaluating saliency models is challeng-

ing in itself which has contributed to fragmentation among

benchmarks that are used. In light of these considerations,

the specific evaluation we have applied aims to remove any

advantages of one algorithm over another due to bias inde-

pendent of image signal, and variation due to gain/contrast

associated with algorithm output. We have restricted our

analysis to gaze data to avoid challenges that may arise

from the additional variability introduced by data collec-

tion methods that approximate gaze data on a larger scale

[19, 36, 30]. The evaluation is largely focused on model-

ing gaze prediction, however we also consider salient ob-

ject segmentation. Given all of these considerations, bench-

marking for both fixation data and salient object segmenta-

tion is based on the methods described by Li et al. [22].

We have compared our output with several saliency and
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segmentation algorithms including: ITTI [18], AIM [5],

GBVS [15], DVA [17], SUN [37], SIG [16], AWS [13],

FT [1], GC [10], SF [27], and PCAS [24]. We have also

compared to one alternative deep learning model SALICON

[19] that performs well in standard benchmarks. Model per-

formance for gaze data is therefore based on the area under

the ROC curve (auROC) corresponding to a shuffled-ROC

metric [33, 22]. Parameters relevant to a fair comparison

of capabilities of different methods (e.g. post-processing

blur) are also optimized in this process. Model performance

for salient object segmentation is based on Precision-Recall

(PR) analysis. Optimal F-Scores along the precision-recall

curves are also taken as an additional measure of algorithm

performance.

3. The Devil in the Data

The outcome of learning is dependent on the specific na-

ture of the image data used in training, and corresponding

ground truth. Analysis presented in this paper therefore in-

cludes detailed consideration of these factors, as discussed

in what follows.

3.1. Choice of Data

Models based on very deep neural networks typically re-

quire a significant amount of data for training. To overcome

this challenge, recent efforts have sought to develop alter-

native strategies for deriving ground truth data that scale to

much larger data sets [19, 36, 30]. In lieu of this strategy,

we instead leverage a combination of different traditional

eye tracking data sets to derive a suitably sized data set for

training. Specifically, we have used a subset of the Bruce

[5], Judd [20], PASCAL [22], and Imgsal [21] datasets. The

{training/testing} division for each of the datasets is as fol-

lows: {60/60}, {300/703}, {325/525}, {117/118}. This

reflects a trade-off between the size of the set of training ex-

amples, and the desire to balance the contribution of sam-

ples from each distinct dataset. The intent of this latter

consideration is towards diminishing bias specific to indi-

vidual datasets. It is also the case then, that all output and

benchmark results for different source datasets correspond

to the same model, and not different models trained for each

dataset individually.

3.2. Ground Truth

Ground truth forms the basis for evaluation, but also

serves an important role in its relation to the loss function

used in training the neural network. This is complicated by

the fact that most metrics employed for performance eval-

uation don’t lend themselves to a form that can be directly

optimized, or treated as a loss function. This obscures the

connection between the ground truth, and the behavior of

the resultant model that is trained. In the case of gaze data,

one typically has a sparse sampling of discrete pixel loca-

tions within each image. These might be assumed to be

observations that may be treated as samples from a latent

distribution. One can convert discrete gaze points to a non-

parametric density via convolution with a Gaussian kernel.

This strategy has been employed to consider the approx-

imate visual acuity of sampling corresponding to a set of

fixation points [5], and blurring of the fixation map is often

used to generate human fixation data derived saliency map

that can be treated as a classifier.

For a variety of common loss functions, direct use of

the discrete fixated locations may not be the best choice:

For example, the sparsity of fixated pixels might imply that

a zero output nearly everywhere is optimal in the eyes of

a Euclidian loss function, without additional constraints.

Moreover, a mix of different datasets results in some hetero-

geneity in the statistical properties of the combined dataset.

In considering treatment of the ground truth data, we have

identified a number of important considerations:

1. Intuitively, one might hope to maximize the signal asso-

ciated with image content driving gaze, while minimiz-

ing noise corresponding to non-gaze related factors and

low sample density in measured fixation data.

2. A continuous representation derived from raw gaze co-

ordinates is a sensible means of producing dense ground

truth.

3. Noise factors may include noise intrinsic to the gaze

tracking instrument, but also inherent bias related to gaze

behavior. The issue of center bias in gaze data has been

much discussed [31], in particular for its role in evalua-

tion. However, one might also treat this bias as a noise

variable, since the salience of local samples is less re-

lated to image content when spatial bias is present in the

data. This is especially important if convolutional layers

have only a local view of the image, without any more

global influence.

4. Gaze tracking data is heterogeneous. Factors that vary

include total viewing times, number of viewers, image

size, viewing distance, and bias in the nature of images.

For these reasons, the spatial distribution and contrast of

derived density maps can vary substantially. This may be

problematic in combining ground truth samples drawn

from different data sets, as their associated statistics may

differ.

Given the aforementioned considerations, we have

adopted the following procedure for producing ground truth

data:

1. Fixation maps are first convolved with a Gaussian kernel,

with σ corresponding to 1 degree visual angle. This im-

plies that density is a good match with sampling density
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Figure 3. Heatmaps superimposed on images from the 4 datasets considered. Top Left: Bruce [5], Top Right: Pascal [22], Bottom Left:

ImgSal [21], Bottom Right: Judd [20]. Each frame shows output corresponding to: (a) the original image, (b) DVA [17], (c) AIM [5], (d)

SIG [16], (e) AWS [13], (f) SALICON [19], (g) 80N, (h) 95N, and (i) fixation density corresponding to the human data.

accounting for differences between foveal and periph-

eral visual acuity. Differences in contrast remain, due to

differing numbers of viewers or viewing time per image.

2. Fixation density maps are averaged over all ground truth

samples within each individual data set. This is prepara-

tion for the optional step that follows.

3. [optional] The average density map for each dataset is

subtracted from each individual density map from the

same dataset. This step is intended to factor out the gaze

signal driven by center bias. It is worth noting that more

sophisticated methods might be used at this stage (e.g.

factoring out context [6]).

4. Ground truth density maps are converted to binary masks

by thresholding. The threshold is percentile based, such

that values across all (rather than individual) density

maps within each dataset determine a threshold value

corresponding to percentile p. This was found to be

a useful way to compensate for differences in contrast

across continuous density maps corresponding to differ-

ent datasets. The value of p is varied in experimentation,

including in serving observation of its interaction with
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Figure 4. Benchmark performance for gaze prediction for 4 datasets. Left column: Curves depicting area under ROC curve as a function

of post-processing blurring kernel σ. Curves are labeled according to Legend. Right: Bar plots showing optimal area under ROC values

for the shuffled-ROC metric. Note for the pascal dataset, two algorithms trained for salient object prediction are also included.

the optional step 3.

Results are discussed in detail in the section that follows,

but we present one set of results here that is germane to the

points made in this section. Figure 2 demonstrates perfor-

mance of FUCOS for fixation prediction for the PASCAL

dataset, in following the above steps for varying values of

p. It is evident that the normalization for center bias is im-

portant to the results that are achieved. Note that given the

dependence of the FUCOS model on data, we refer to indi-

vidual instantiations of FUCOS according to shorthand that

reflects the nature of the training data. In particular, each of

the models is numbered according to the percentile thresh-

old used, with N indicating normalization to compensate for

center bias, and S indicating no such normalization. (e.g.

85S indicates training based on binary outputs correspond-

ing to a threshold based on the 85th percentile value in the

non-normalized fixation density maps)

4. Results

In this section, we present qualitative examples of out-

put from various algorithms corresponding to the 4 datasets,

and results from performance evaluation benchmarks. Fig-

ure 3 demonstrates the output of a variety of algorithms,

with the correspondence to dataset and algorithm noted

in the figure caption. Visualization is based on super-

imposing a heatmap corresponding to algorithm output

(saliency) over the original image. The problem of visu-

alizing saliency map output appropriately can be a chal-

lenge (e.g. see [7]). To ensure that observed differences due

to perceptual considerations are minimized, output saliency

maps are histogram equalized to ensure matching contrast.

Pixels covered by the superimposed heatmap correspond to

the top 20% of output values in each saliency map, with col-

ormap values mapped linearly to the equalized heatmap val-

ues. This provides an effective means of comparing the pre-

dictions of most salient regions across different algorithms.

As mentioned in the methods section, performance is

quantified according to the area under the ROC curve, treat-

ing the output of algorithms as a binary classifier. Evalu-

ation corresponds to the shuffled AUC score that is com-

mon in saliency evaluation. It is also important to note that

benchmarking is performed on the raw gaze data as is typ-

ical, and the earlier discussion of binarized ground truth

maps applied only to produce data used in training. Re-

sults for a variety of algorithms, and for the 4 datasets are

shown in Figure 4. It is evident that FUCOS significantly

outperforms existing approaches to the problem. We have

also compared the output to the SALICON model, which

is a deep learning model. Interestingly, our solution per-

forms significantly better for 2 of the 4 datasets, slightly

better for 1 and significantly worse for the other. It is worth

noting that the case where FUCOS is not the top perform-

ing model may be due to training of the competing model

(SALICON) on images that comprise the test data. Over-

all, this analysis hints at strengths and weaknesses of deep
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+GBVS

SAL-FCN SAL-DC

Figure 5. Predicted salient object regions from the Pascal dataset.

Output corresponds to algorithms intended for salient object seg-

mentation (Left to Right): GC, SF, PCAS, MCG+GBVS, SAL-

FCN, SAL-DC

learning solutions as a function of the nature of the different

datasets. This matter is discussed in much greater detail in

section 5.

4.1. Salient Object Segmentation

As discussed in the introduction, the notion of saliency

has become fragmented, and encompasses both gaze pre-

diction and salient object segmentation, among other tasks.

As such, we have also considered the efficacy of fully con-

volutional network models to predict salient object regions

(as defined by ground truth object masks). In addition to

the FUCOS model considered for gaze prediction, we have

also tested an additional model (DeconvNet [26]) based on

the expectation that its structure may allow more precise re-

covery of spatial information corresponding to boundaries

of salient objects. For this line of experimentation, train-

ing was based on ground truth corresponding to the binary

salient object masks.

Sample output is shown in Figure 5. Corresponding

benchmark performance is characterized in Figure 6. It is

interesting to note the efficacy of these models relative to

existing solutions for the problem of salient object segmen-

tation. Also of note, is the difference between SAL-FCN

and SAL-DC models. Both of these produce a similar max-

imal F-Score, however SAL-DC reveals a higher precision

at lower recall values, perhaps reflecting a more precise ad-

herence to spatial boundaries of segmented salient objects.

5. Are Objects Salient?

Much of the emphasis of this paper is on saliency as it

relates to gaze prediction. This section considers the rela-

tionship between objects and gaze prediction. More specif-

ically, we seek to examine to what extent gaze is driven by

Recall
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Figure 6. Precision-Recall curves for salient object detection cor-

responding to a variety of algorithms (See Legend). Points on

curves correspond to maximal F-Score.

the presence of objects rather than alternative factors. In this

section, we explore this point in detail. This includes analy-

sis of different factors that contribute to gaze behaviour and

the extent to which these are reflected in traditional saliency

models and those based on deep learning. We also highlight

other potentially important points that are not addressed by

existing models.

There has been much debate about the relative impor-

tance of objects and saliency defined by feature contrast.

Some studies have claimed that objects better predict gaze

patterns than low level saliency models [11], and others

have sought to rebut this claim [3]. The most likely sce-

nario is that objects play a role in driving gaze, but that

feature contrast is also an important factor. Moreover, the

behaviour that manifests depends critically on other factors

including task and context [32, 29].

We have also examined the relationship between objects

and gaze patterns directly in the context of this paper, in ex-

amining the performance of models intended for salient ob-

ject segmentation in their ability to predict fixation patterns.

For the Pascal dataset, the SAL-FCN and SAL-DC mod-

els trained for object segmentation have also been tested in

their ability to predict gaze points. This is revealed in Figure

4. A whole-object centric model (SAL-FCN in particular)

performs comparable to some of the better classic contrast

based saliency algorithms. Differences between SAL-FCN

and SAL-DC in this evaluation hint at how the two differ

in the relative uniformity of their output, or distribution of

confidence as a function of typically gazed at features on

objects.

It is clear that some fixations are directed at objects,

while others depend on local feature contrast that is rela-

tively detached from semantics. Relevant to this discussion

is the performance of the SALICON model relative to FU-

COS. SALICON is notably strong on datasets that by some

accounts are characterized as having the strongest seman-

tically relevant content [4]. In contrast, it’s performance

may be weaker for images in which feature contrast is a

stronger driving factor, or where objects and semantics are
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IMAGE SALICON 80N CONTRAST

Figure 7. Examples for which contrast is important to determining

saliency, or contrast based saliency is in conflict with semantics.

Shown are the source image, output of SALICON, FUCOS (80N),

and a recent contrast driven saliency algorithm. [28]

less prevalent in the data. It is evident that a challenge

moving forward, lies in balancing bottom-up purely stimu-

lus driven factors, and top-down influences including prior

knowledge in how models behave.

It is also important to consider the extent to which these

models are learning templates (e.g. for semantically rele-

vant patterns) as opposed to more generalized feature con-

trast. To shed some light on this point, we present a variety

of examples that are indicative of weaknesses of deep learn-

ing solutions in their capacity to generalize with respect to

feature contrast. These examples are shown in Figure 7.

Having touched on the notion of prior knowledge and

top-down influences, the balance of this section discusses a

variety of considerations that are absent from current mod-

els but that may have relevance to future efforts.

5.1. Affordance and Action

While objects are evidently important, there is also much

prior knowledge tied to actions that presumably influences

gaze behavior. This includes assumptions concerning how

objects may be used, and ways in which the viewer might

interact with objects or people. To consider the potential im-

pact on models of gaze behavior, we have carefully exam-

ined model output from different datasets and compared this

with human fixation densities. There appear to be a variety

of cases where action, social, or affordance based consider-

ations play a role in gaze behavior. Some examples of these

IMAGE DVA AWSAIM SIG SALICON 80N 95N HUMAN

Figure 8. Images for which gaze patterns may be driven by prior

knowledge that transcends object labels. Columns correspond to

(Left to Right) the original image, DVA [17], AIM [5], SIG [16],

AWS [13], SALICON [19], 80N, 95N and fixation density corre-

sponding to the human data.

are presented in Figure 8. Some of the observed human

gaze patterns seem to reflect a stronger emphasis in gaze

on items in peripersonal space of people in the scene, items

being manipulated, environment or object locations relevant

to actions being performed, gazed at locations by humans in

the scene (joint attention), and subregions of larger objects

that have relevance according to their function.

5.2. Visual Acuity and Memory

The need to gaze is driven largely by foveation. Higher

resolution input from the fovea serves to provide disam-

biguating information about the scene possibly relevant to

a task or specific target [25]. For this reason, gaze is influ-

enced by the quality of representation that is possible as a

function of fixations made and prior knowledge. One phe-

nomenon that seems to occur frequently is an unexpectedly

large degree of fixation density on more distant targets. This

is conceivably due to the need for more careful scrutiny to

determine the identity of the object. This observation seems

to be related to the notion of a horizon effect [34], albeit the

role of distance and scene composition seem to play an im-

portant role in driving gaze in a more general sense.

Related to this are higher contrast items that receive rel-

atively little attention. Some of these seem to correspond

to items that are iconic, or have a common appearance (e.g.

flags). It is also conceivable that strong prior knowledge
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concerning object characteristics precludes the need for di-

rect foveation to completely disambiguate their characteris-

tics. These observations all lend support to the notion that

models that include more prior knowledge about objects,

scene composition, actions, social interaction, and human

behavior will help to bridge the gap between the state of the

art in gaze prediction, and recorded human gaze data.

6. Discussion

In this paper, we present a deep learning model for

saliency prediction, and demonstrate the effectiveness of

this approach for both gaze prediction and salient object

segmentation. A variety of important observations follow

from this analysis:

1. Choice of image data: The behaviour of FUCOS and

related models evidently depends on the choice of in-

put data. The variable nature of performance for the

SALICON model across different datasets suggests that

the source data used in training may match some of the

datasets tested better than others. In contrast, a more var-

ied selection of input data seems to result in strong per-

formance across varied datasets. The role of efforts to

crowdsource data collection that approximates gaze data

[19, 36, 30] will no doubt help in these efforts. Never-

theless, training with more data, and more varied data is

not necessarily the most effective solution. This is elab-

orated on in some of the points that follow.

2. Choice of ground truth: There are instances where the

manner for treating ground truth is well-defined, espe-

cially when there is a direct relationship between the

loss function being optimized in training, and the metric

used for performance evaluation. This is generally not

the case for gaze prediction, and results presented in this

paper reveal the importance of carefully considering how

human gaze data is translated into a form that is suitable

training. Even in cases that have a clearer correspon-

dence between ground truth and problem objective (e.g.

salient object segmentation), sensitivity to perturbations

of ground truth is not well established. Hand labeled re-

gions may be relatively coarse grained, or follow specific

form and details of the objects. These differences might

conceivably have a similar importance in the model be-

havior following training.

3. Role of Semantics: Incorporating knowledge of seman-

tics in gaze prediction is evidently important. This has

been clear from efforts that reveal the importance of

faces and text in driving fixations [9]. It is also clear that

people and animals are important, including a particular

emphasis on both human and animal faces. One target

for future work is the need to understand the relative im-

portance of semantics beyond some of these established

categories.

4. On Feature Contrast: A filter sensitive to edges, or

a local Difference of Gaussians operator may each be

viewed as a detector for a certain type of contrast. This

consideration extends to more complex patterns includ-

ing discontinuities in texture and other mid-level fea-

tures. One might assume that an appropriate response

to all patterns may be encoded in a feedforward manner,

with an appropriate network configuration and training

data. However, this presents a rather rigid way of encod-

ing feature contrast. A more likely candidate is mecha-

nisms that involve recurrence. Local divisive normaliza-

tion is sufficiently ubiquitous in the human visual system

that this has been deemed to be a canonical operation in

visual and other sensory computation [8]. It is likely

that highly flexible models of visual saliency computa-

tion are possible with a much simpler network in im-

plementing similar computation alongside semantically

driven selection.

5. Affordances and more: We have provided examples of

cases that may be challenging for current models of gaze

prediction. Some of these are anecdotal or based on the

authors’ assumptions concerning visual routines [35] at-

tached to these scenes. Nevertheless, it is well estab-

lished that phenomena such as joint attention are impor-

tant to driving viewing behaviour. Moreover, the role of

the eye as a sensory instrument is largely lacking from

existing models, but presumably plays a significant role

in how visual content is parsed.

It is clear that deep learning models may be highly capa-

ble in visual saliency prediction. However, this capability

may be bolstered significantly by careful decisions in how

models are trained. As richer levels of scene and action un-

derstanding are developed, this will also allow models for

gaze prediction to address scenarios that are currently out

of reach. Feature contrast as a general phenomenon is one

central component to saliency driven fixation behavior that

may be poorly captured by deep learning models. This can

likely be rectified by appropriate adjustments to the neural

architecture used, including by incorporating local mecha-

nisms for gain control and normalization. This is a con-

sideration that may also have important implications for all

deep learning models, including those that target problems

outside of saliency or gaze modeling.
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