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Abstract

The focus of this article is on automatic detection of fence or wire mesh (a form of quasi-periodic texture) in
images through frequency domain analysis. Textures can be broadly classified in to two general classes: quasi-
periodic and random. For example, a fence has a repetitive geometric pattern, which can be classified as a quasi-
periodic texture. Quasi-periodic textures can be easily detected in the frequency spectrum of an image as they result
in peaks in the frequency spectrum. This article explores a novel way of de-fencing viewed as a quasi-periodic texture
segmentation by filtering in frequency domain to segregate the fence from the background. A resulting de-fenced
image is followed by support vector machine classification.An interesting application of the proposed approach is
the removal of occluding structures such as fence or wire mesh in animal enclosure photography.
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1. Introduction

This article introduces an algorithm to detect automatically fence or wire mesh structures,
which typically present in the foreground of the image. A region in an image has a constant texture,
provided a set of local statistics or other local propertiesof the picture function are constant,
slowly varying, or approximately periodic (Tuceryan & Jain, 1993). A fence can be classified as a
texture in an image. Textures can be broadly classified in to two general classes:periodicor more
generallyquasi-periodic texturesandrandom textures.
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According to (Rangayyan, 2004), if there is a repetition of a texture element at almost regular
or quasi-periodic intervals, such textures can be classified as quasi-periodic or ordered and the
smallest repetitive element is called a texton or a texel. Incontrast if no such repetitive element
can be identified, those textures can be classified as random.

(Ohm, 2004) classifies textures asregular andirregular textures. Regular textures refer to tex-
tures, which exhibits strong periodic or quasi-periodic behavior. According to (Ohm, 2004), exact
periodicity is a very rare case mostly found in synthetic images. The regular structures in natural
images are often quasi-periodic, which means that periodicpattern can clearly be recognized, but
have slight variations of periods. As it will be shown in section 2, quasi-periodic textures are a
generalization of periodic textures.

Based on the above classifications, a fence structure, whichhas a texture element repeating
at quasi-periodic intervals can be categorized as a quasi-periodic texture. Hence, a fence-like
texture can be modeled as a quasi-periodic signal, which shows peaks in its power spectrum. It
is mentioned in (Chang & Kuo, 1993) that these kinds of quasi-periodic signals possess dominant
frequencies located in the middle frequency channels.

The perception of texture has numerous dimensions. Thus, a number of different texture repre-
sentations were introduced from time to time in order to accommodate a variety of textures. These
representations are categorized in (Tuceryan & Jain, 1993) as statistical methods, which involves
co-occurrence matrices and autocorrelation features, geometric methods, model based methods
and signal processing methods. Signal processing methods are subdivided into spatial domain
filtering (Malik & Perona, 1990) and frequency filtering.

Frequency analysis of the textured image is close to human perception of texture as human
visual system analyzes the textured image by decomposing the image into its frequency and orien-
tation components (Campbell & Robson, 1968). (Turner, 1986) and (Clark et al., 1987) proposed
to use the Gabor filters in texture analysis. The Gabor filter is a frequency and orientation selective
filter. Another model, which is widely used for texture analysis is wavelet transform (Chang &
Kuo, 1992, 1993; Wilscy & Sasi, 2010).

The focus of this article is on images, which are occluded with fence textures as shown in
figure1. In such cases, it is challenging to segment the fence from the rest of the image, especially
when the image background is regular. Simple colour segmentations and edge detection does not
work in this case.

The traditional frequency filters used for texture analysis, Gabor and Wavelet cannot be directly
applied to extract fence texture in our scenario as the frequencies correspond to both fence and the
background are present in the spectrum. Thus, we first perform frequency domain processing to
isolate fence texture from the background and subsequentlyapply Wavelet transform.

An interesting application of the proposed algorithm can bedetection and removal of fence-
like textures obstructing the images in zoo photography. According to many web articles on pho-
tography (Stalking, 2010; Masoner, 2013), wire mesh and fences are a major challenge in zoo
photography. The algorithm proposed in this article was tested for fences with different shapes,
sizes, colours and orientations.

The rest of the article is organized as follows. Section2 introduces quasi-periodic signals
and provides the mathematical background to analyze quasi-periodic signals in images. Section3
discusses the implementation of the quasi-periodic texture detection algorithm in three steps: (1)
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frequency domain filtering for quasi-periodic texture detection, (2) multiresolution processing for
fence mask formation and (3) fence segmentation through SVMclassification. The experimen-
tal results of the proposed algorithm are given in Section4 for some zoo images as well as for
some challenging images from PSU NRT Database (Liu, 2007). A comparison of the proposed
method with existing fence detection techniques is given insection5 followed by future work and
conclusion in sections6 and7 respectively.

Figure 1. Images Occluded with Fence Textures.

2. Quasi-periodic Signals

Before going into details of quasi-periodic texture detection in images, understanding the math-
ematical background of quasi-periodic signals is important.

Definition 2.1. Continuous-time Periodic Signal((Proakis & Manolakis, 2006, §1, p. 13))
By definition, A continuous signal f(t) locally defined on thesetL2(R) of finite energy signals is
fully periodic with period T, when the signal exactly satisfies

f (t) = f (t + T).

Definition 2.2. Continuous-time Quasi-periodic Signal((Martin et al., 2010))
A signal fqp(t) is quasi-periodic with k periodsT1, ...,Tk when

fqp(t) = g { f1(t), f2(t), ..., fk(t)} ,

where the k signalsfi(t) are continuous periodic signals with respect to each period Ti.

In the case of continuous functions locally defined on the setL2(R) of finite energy signals,
quasi-periodic signals are a generalization of periodic signals. All the periods are required to be
strictly positive and to be rationally linearly independent (Martin et al., 2010).

Definition 2.3. Discrete-time Periodic Signal((Proakis & Manolakis, 2006, §1, p. 15))
A discrete-time signal f(n) is periodic with period N, if andonly if,

f (n) = f (n+ N) for all n.
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Based on the definition of continuous-time quasi-periodic signals, the definition for discrete-
time quasi-periodic signals can be derived.

Definition 2.4. Discrete-time Quasi-periodic Signal
A discrete-time signalfqp(n) is quasi-periodic with k periodsN1, ...Nk when

fqp(n) = g{ f1(n), f2(n), ..., fk(n)},

whereg : Zk → Z and the k signalsfi(n) are discrete-time periodic signals with respect to each
periodNi .

In the context of this paper, an image is considered as a 2D discrete-time signal. If we extend
the definition of 1D quasi-periodic signal to 2D quasi-periodic signal;

Definition 2.5. 2D Discrete-time Periodic Signal((Woods, 2006, §1, p. 7))
A 2D discrete-time signal f(x,y) is periodic with period (M,N), if and only if,

f (x, y) = f (x+ M, y) = f (x, y+ N),∀n,m ∈ Z.

Definition 2.6. 2D Discrete-time Quasi-periodic Signal
A 2D discrete-time signalfqp(x, y) is quasi-periodic with k periods (M1, ...Mk,N1, ...Nk) when

fqp(x, y) = g{ f1(x, y), f2(x, y), ..., fk(x, y)},

where the k signalsfi(x, y) are discrete-time periodic signals with respect to periods (Mi ,Ni).
Hence, a quasi-periodic signal can be defined as a combination of periodic signals with incom-
mensurate (not rationally related) frequencies (Battersby & Porta, 1996). If the frequencies are
commensurate, thenfqp becomes a periodic signal (Regev, 2006).

A discrete-time quasi-periodic signal can be expressed with a Fourier series as given in defini-
tion 2.8as a generalization of definition2.7. 1D case will be considered for simplicity and it can
be extended to 2D.

Definition 2.7. Fourier Series of a Discrete-time Periodic Signal ((Proakis & Manolakis, 2006,
§4, p. 242))

f (n) =
N−1
∑

k=0

ckexp

(

j2πkn
N

)

.

Definition 2.8. Fourier Series of a Discrete-time Quasi-periodic Signal ((Regev, 2006, p. 156))
The Fourier series of a r-quasi-periodic signal is given by (Regev, 2006):

fqp(n) =
∑

k1

∑

k2

...
∑

kr

ck1k2...kr exp

[

j

(

2πk1n
N1

+
2πk2n

N2
+ ... +

2πkrn
Nr

)]

,

where k=1,2,...,r and the frequenciesωk = 2π/Nk are incommensurate.
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Theorem 2.1. Let fqp(n) be a discrete-time quasi-periodic signal. Then the frequency spectrum
of fqp(n) consists of a set of peaks determined by the fundamental frequencies of each discrete
periodic signal component in the signal.

Proof. With ωi = 2π/Ni , fqp(n) in definition2.8can be re-written as

fqp(n) =
∑

K

cKexp
[

jKΩn
]

,

whereK = (k1, k2, ..., kr) andΩ = (ωi, ω2, ..., ωr). Thus, the frequency spectrum contains numerous
peaks at all frequenciesν, satisfying

2πν = |K ·Ω| = |k1ω1 + k2ω2 + ... + krωr |,

for any combination of integersk1, k2, ..., kr .

3. Quasi-periodic Texture Detection in Frequency Domain

3.1. Frequency Domain Filtering for Quasi-periodic Texture Detection

As proven by theorem2.1, the Fourier spectrum of a quasi-periodic signal consists of a discrete
set of spikes or peaks at a number of frequencies depending onthe number of periodic signals it is
comprised of. Hence, based on theorem2.1, the fence-like quasi-periodic structure should result
in peaks in the frequency spectrum of the image. The objective of this section is to filter those
spikes in the frequency spectra relevant to the quasi-periodic signal in order to extract the fence
texture corresponding to the quasi-periodic signal from the rest of the image.

To achieve this, first start with the frequency domain representation of the 2D image. We will
be considering the DFT of an image.

F(u, v) =
M−1
∑

x=0

N−1
∑

y=0

f (x, y)exp
[

− j2π
(ux

M
+

vy
N

)]

u=0,1,...M-1, v=0,1,...N-1. (3.1)

To filter the frequencies showing spikes in the frequency spectra, it is necessary to perform
thresholding based on the magnitude of each frequency component. A filter functionH1(u, v) in
frequency domain can be defined for this purpose as given below.

H1(u, v) =

{

1 if |F(u, v)| > T,
0 otherwise,

(3.2)

where T is a threshold to filter spikes in frequency.
Once the thresholding is applied to the frequency components:

F′(u, v) = H1(u, v)F(u, v)

Although, we filtered the frequency components corresponding to peaks in the frequency spec-
tra, it is necessary to filter peaks in frequencies resulted by other details in the image. For an ex-
ample, the DC component F(0,0), which can be derived by substituting u=0 and v=0 in equation
3.1. |F(0, 0)| typically is the largest component of the spectrum.
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F(0, 0) = MN
1

MN

M−1
∑

x=0

N−1
∑

y=0

f (x, y) = MN f (x, y).

The quasi-periodic signal in our case is the fence. Fence-like textures typically result in qausi-
periodic signals whose dominant frequencies are located inthe middle frequency channels (Chang
& Kuo, 1993). Therefore, by using a bandpass filter in frequency domain,the frequencies corre-
sponding to the fence can be filtered.

H2(u, v) =

{

1 if D1 ≤ D(u, v) ≤ D2,

0 otherwise.
(3.3)

whereD1 andD2 are constants and D(u,v) is the distance between a point (u,v) in the frequency
domain and the center of the frequency spectrum.

Thus, the final result in frequency domain after applying thesecond filter would be:

F′′(u, v) = H2(u, v)F′(u, v),
= H2(u, v)H1(u, v)F(u, v),
= H(u, v)F(u, v),

whereH = H2H1, since the application ofH1 andH2 can be considered as a cascade system.
WhenF′′(u, v) is transferred back into spatial domain, the resulting image is given by:

g(x, y) =
1

MN

M−1
∑

u=0

N−1
∑

v=0

F′′(u, v)exp
[

j2π
(ux
M
+

vy
N

)]

x=0,1,...M-1, y=0,1,...N-1.

It is important to note thatH1 andH2 are zero phase shift filters, which affect the magnitude
of the frequency spectra, but do not alter the phase angle. These filters affect the real (Re(u,v))
and imaginary (Im(u,v)) parts equally, thus cancels out when calculating phase angleφ(u, v) =
arctan[Im(u, v)/Re(u, v)].

Figure2(d) illustrates the final result of frequency domain filtering explained above. It can be
clearly seen that the fence texture is emphasized and other image details have been suppressed.

3.2. Multiresolution Processing for Fence Mask Formation

The human visual system analyzes the textured images by decomposing the image into its fre-
quency and orientation components (Campbell & Robson, 1968). Wavelet transformation provides
the ability to analyze images through multiresolution processing.

Wavelet transform in two dimension provides the two dimensional scaling functionφ(x, y)
and three two dimensional directionally sensitive waveletsψH(x, y), ψV(x, y),ψD(x, y) as given in
(Gonzalez & Richard, 2002).

φ j,m,n(x, y) = 2
j
2φ(2 j x−m, 2 jy− n).

ψi
j,m,n(x, y) = 2

j
2ψi(2 j x−m, 2 jy− n), i = {H,V,D}.
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(a) Original Image (f(x,y)). (b) Filtered Peak Frequencies (F’(u,v)).

(c) Bandpassed Spectrum (F”(u,v)). (d) Spatial Domain (g(x,y)).

Figure 2. Frequency Domain Filtering for Fence Texture Segregation from Image
Background.

These wavelets measure intensity variations for images along different directions:ψH mea-
sures variations along horizontal direction (along columns),ψV measures variations along vertical
direction (along rows) andψD corresponds to variations along diagonals.

The discrete transform of image f(x,y) is:

Wφ( j0,m, n) =
1
√

MN

M−1
∑

x=0

N−1
∑

y=0

f (x, y)φ j0,m,n(x, y).

Wi
ψ( j,m, n) =

1
√

MN

M−1
∑

x=0

N−1
∑

y=0

f (x, y)ψi
j,m,n(x, y), i = {H,V,D},

where j0 is an arbitrary starting scale and theWφ(J0,m, n) coefficients define an approximation
of f(x,y) at scalej0. TheWi

ψ( j,m, n) coefficients add horizontal, vertical and diagonal details for
scalesj ≥ j0. Wi

ψ( j0,m, n) coefficients are called detail coefficients. Usuallyj0 is set to zero.
For each level j, thresholding is performed on the details coefficientsWi

ψ( j,m, n) to extract the
fence masksMi( j,m, n) at each level j.

Mi( j,m, n) =

{

1 if Wi
ψ( j,m, n) > T j, whereT j is the threshold for levelj,

0 otherwise.
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The final fence mask at level j is obtained by performingORoperation of the vertical, horizon-
tal and diagonal fence masks at level j.

M( j,m, n) = MV( j,m, n) ⊕ MH( j,m, n) ⊕ MD( j,m, n).

The detected fence masks at 3 consecutive levels are shown infigure3.

(a) M(1,m,n). (b) M(2,m,n). (c) M(3,m,n).

Figure 3. Detected Fence Masks at Three Different Levels.

Next, the fence masks at different levels of wavelet pyramid were combined by using a coarser
to finer strategy. The objective is to reduce noise and extract pixels, which fall exactly on the fence.
In order to make the resultant mask in the same size as the original image, a mask was created at
the zero level by just thresholding the spatial domain result of frequency filtering (g(x,y)). Hence,
altogether we have fence masks at 4 different levels in the pyramid.

First, the highest level fence mask (level 3) was consideredand if a pixel belongs to the mask
then we move to the next lower level (level 2) and check for theneighbouring children of the orig-
inal pixel. If any of the neighbouring children are mask pixels, then recursively go and check for
their neighbouring children in the subsequent lower levels. Finally, when the algorithms reaches
the bottom most level (zero level), it marks the mask pixels as 1, given that the neighbouring
children in the lowest level are mask pixels as well. The resultant fence mask is shown in Figure
4.

Figure 4. Fence Mask Formed by Combining Wavelet Decomposition Levels.
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3.3. Fence Segmentation through SVM Classification

Although the noise is minimized and the fence is emphasized in the detected fence mask, it is
not perfectly detected yet. However, the detected fence mask classifies a good number of pixels,
which exactly falls on the fence in the image. This knowledgeon fence pixels can be used to
segment the fence. Hence, it was decided to pick some samplesfrom the fence mask and use
the features of those sample pixels to train aSupport Vector Machine (SVM) classifierin order to
segment the fence texture. A SVM classifier with a linear kernel is used in this case.

In addition to the samples from fence, it is necessary to picksamples from background to
train the SVM classifier. For this purpose two root level fence masks were generated. One root
level mask was generated by selecting a very high threshold and the other one is generated by
using a very low threshold. These masks were used as the root level mask in the process of
combining wavelet decomposition levels as explained in section 3.2separately in order to generate
two different final fence masks as shown in Figure5.

As it can be clearly seen, the root level mask with high threshold generates a very thin final
mask, resulting points, which exactly lie on the fence. On the other hand the root level mask with
low threshold generates a thick fence mask, which has some points fall on the background as well.

(a) Thin Mask with High Threshold. (b) Thick Mask with Low Threshold.

Figure 5. Two Fence Masks used for SVM Classification.

The thin mask was used to pick random samples, which represent fence class and the negation
of the thick mask (1-thick mask) is used to pick random samples, which represent the background
class. The use of negation of thick mask for background sample selection reduces the chance of
picking fence pixels as background pixels and hence improves the accuracy of classification.

The feature vector selected for classification plays a very important role in this case as it affects
the overall performance of the classification. The RGB colour channels and the gradient direction
of the samples were used as the feature set for classification. The resultant fence mask can be
further improved with the help of morphological operations.

The algorithm to achieve fence-like quasi-periodic texture detection in digital images is given
in Algorithm 1.
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Algorithm 1 Algorithm for fence-like quasi-periodic texture detection in images

1: Read the fenced imageI
2: ConvertI into frequency domain using Discrete Fourier Transform (let the output beF)
3: Filter F using the peak frequency filterH1 defined in equation3.2(let the output beF1)
4: Filter F1 using the band pass filterH2 defined in equation3.3(let the output beF2)
5: ConvertF2 back into spatial domain (let the output befiltI )
6: Perform Wavelet decomposition onfiltI with three decomposition levels
7: for each Wavelet decomposition leveldo
8: Find vertical (V), horizontal (H) and Diagonal (D) components
9: Threshold V, H and D with the same threshold

10: Combine thresholded V, H and D components using logical OR operation
11: end for

⊲ %comment: Obtain fence mask by combining all three levels ofthe wavelet pyramid (let
the output be fenceMask)%

12: Start from the highest Wavelet decomposition level (level 3)
13: for each pixel in level 3do
14: if a pixel belongs to the maskthen
15: Move to next lower level
16: if current level== lowest levelthen
17: Mark the pixel as mask pixels
18: Mark the neighbouring children as mask pixels
19: else
20: Check neighbouring children
21: if neighbouring children are mask pixelsthen
22: Go back to step 14
23: end if
24: end if
25: end if
26: end for
27: Prepare the training data matrix using feature vectors of sample pixels fall on fence (fence-

Mask==1) and background (fenceMask==0).
28: Train the SVM classifier by using training data matrix of step25.
29: Perform SVM classification by using the trained classifier instep 26 by giving original image

as the input to obtain final fence mask.
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(a) Child Image. (b) Fence Mask for Child Image.

(c) Building Image. (d) Fence Mask for Building Image.

(e) Flower Image. (f) Fence Mask for Flower Image.

Figure 6. Results of Fence-like Texture Detection in Images from PSU NRT Database
(Liu, 2007).
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4. Experimental Results

The frequency domain-based fence-like quasi-periodic texture detection algorithm proposed
in this article was implemented in Matlab R2013a and it was tested with a number of images
with fence-like texture. Some test images were obtained from PSU Near-regular Texture database
(Liu, 2007). Images with fences of different shapes (square and diagonal), sizes, colours and
orientations were used for this experiment. Figure6 illustrates results of some of the challenging
cases encountered during experiments.

For the completion of the sample application chosen in this paper, once the fence texture was
successfully detected and removed, the region, which belonged to the fence, should be filled with
relevant information in order to obtain the final image. One of the techniques, which can serve
this purpose isinpainting. According to (Bertalmioet al., 2000), inpainting is themodification
of images in a way that is non-detectable for an observer who does not know the original image.
There are numerous inpainting techniques introduced in past literature.

For examples region filling and object removal by exemplar-based image inpainting by Crim-
inisi et al. (Criminisi et al., 2004), Fields of experts by Roth et al. (Roth & Black, 2009) and Image
completion with structure propagation by Sun et al. (Sunet al., 2005). Among these techniques,
the exemplar based image inpainting technique (Criminisi et al., 2004) was used to fill the fence
region in this approach. The results are given in figure7.

Interestingly, some image distortions can be observed after performing inpainting for some
images. The region belonged to the fence texture is much moredifficult to texture fill than large,
circular regions of similar area. The fence texture in this case is usually wide spread in the whole
image. Thus, it requires the inpainting algorithm to correctly propagate and join different types of
structures in order to fill this wide spread fence region. Hence, mistakes in structure propagation
can be quiet frequent in this case. The high ratio of foreground area to background area and the
fragmented background source textures may become challenging for the inpainting technique.

5. Comparison with Existing Fence Detection Techniques

Most of the articles, which investigated the image de-fencing problem, have used a texture
based approach to detect the fence, based on the assumption that a fence is a near regular structure.
(Liuy et al., 2008) introduced an image de-fencing technique based on latticestructure of regular
textures in their article. The de-fencing algorithm proposed in (Liuy et al., 2008) consists of three
steps.(1) automatically finding the skeleton structure of a potential frontal layer in the form of a
deformed lattice; (2) classifying pixels as foreground or background using appearance regularity
as the dominant cue, and (3) inpainting the foreground regions using the background texture which
is typically composed of fragmented source regions to reveal a complete, non-occluded image
(Liuy et al., 2008).

In the first step, to automatically detect the lattice of the fence, (Liuy et al., 2008) uses the
iterative algorithm explained in (Hayset al., 2006), which tries to find the most regular lattice for
a given image by assigning the neighbour relationships suchthat neighbors have maximum visual
similarity. Step one results in a mesh of quadratiles, whichcontains repeated elements or texels.
In the second step standard deviation of each colour channeland the color features are used for k-
means clustering for background foreground separation. Inorder to obtain the standard deviation,
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(a) Lynx. (b) Fence Mask. (c) Fence Mask Applied Im-
age.

(d) Inpainted Image.

(e) Puma. (f) Fence Mask. (g) Fence Mask Applied Im-
age.

(h) Inpainted Image.

(i) Lion (Schneider, 2010). (j) Fence Mask. (k) Fence Mask Applied Im-
age.

(l) Inpainted Image.

(m) Leopard. (n) Fence Mask. (o) Fence Mask Applied Im-
age.

(p) Inpainted Image.

(q) Puppies (Liu, 2007). (r) Fence Mask. (s) Fence Mask Applied Im-
age.

(t) Inpainted Image.

Figure 7. Results of Fence Removal from Zoo Images.
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the texels were aligned and arranged in a stack and standard deviation is calculated along each
vertical column of pixels. Finally, texture based inpainting technique introduced by Criminisi et
al. (Criminisi et al., 2004, 2003) is used to obtain the final de-fenced image.

Park et al. revisits the image de-fencing problem in their paper (Park et al., 2011). They
no longer uses the lattice detection algorithm introduced in (Hayset al., 2006), as they states its
performance is far from practical due to inaccuracy and slowness. Rather the implementation of
lattice detection algorithm in (Parket al., 2011) is similar to (Parket al., 2009). In their method,
once the type of the repeating pattern is learnt, the irregularities are removed and the learned reg-
ularity is used in evaluating the foreground appearance likelihood during the lattice growth. They
have improved the lattice detection algorithm by introducing an online learning and classification.

In essence, the de-fencing algorithms introduced in both ofthese articles uses a lattice de-
tection algorithm in order to find the fence mask. Thus, the success of both algorithms depends
on finding the repeated element or texel in the fence structure. The lattice detection algorithm
used by (Liuy et al., 2008) has no measures against irregularities in the lattice while the lattice
detection algorithm used by (Parket al., 2011) takes some measures to remove irregularities dur-
ing lattice growth. However, both these approaches depend on the regularity of the fence as well
as the irregularity of the background of the image. Although(Parket al., 2011) takes measures
against irregularities in the fence, it does not take in to account the possibility of regularities in the
background. Furthermore, the lattice detection process itself is very complex and time consuming.

In contrast to the two methods discussed above, the method explained in this article uses a fre-
quency domain approach to address the fence detection problem. Due to the uncertainty principle,
the global wide spread fence texture in spatial domain becomes local to a set of frequencies in the
frequency domain. So the processing required to extract thefence texture in frequency domain
is simpler and faster compared to spatial domain processing. This becomes advantageous in the
proposed method compared to the existing techniques. Moreover, the band pass filtering in fre-
quency domain used in the proposed method helps to avoid other periodic structures (regularities)
in the background, which is not possible in existing techniques. The proposed method is robust
against deformations and irregularities in the fence texture due to SVM classification used in fence
segmentation phase.

The existing near regular lattice detection approaches work well for some images and on the
other hand fail for some cases. They have observed that the failure cases are often accompanied
by sudden changes of colors in the background and obscuring objects in front of the fence. For
examples in (Liuy et al., 2008) method, the lattice detection fails for images (a) and (c) in Figure
6 and for image (q) in Figure7. The proposed method is successful in detecting fence texture in
all those images. A comparison of fence mask detected in Flower image by (Liuy et al., 2008)
method and proposed method is given in Figure8.

However, the proposed method fails to provide satisfactoryresults for blurred images, espe-
cially when the fence is very much blurred. In such cases preprocessing to sharpen the fence may
give better results. Furthermore, fence segmentation becomes challenging when the visual similar-
ity between fence pixels and background pixels becomes high. Feature set used for segmentation
has to be tuned to overcome such problems. Determining the correct feature set is challenging in
such scenarios.
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(a) Flower Image. (b) (Liuy et al., 2008). (c) Proposed Method.

Figure 8. Comparison of Fence Mask Detected for Flower Image.

6. Future Work

Fence texture segmentation becomes challenging, when there are pixels with features similar
to fence pixels in the background. SVM classification used for final segmentation of the fence
texture in this article can be replaced with descriptive motif pattern generation described in (Peters
& Hettiarachichi, 2013). The accuracy of this phase can be further improved with help of near set
theory (Peters, 2013; Peters & Naimpally, 2012; Peters, 2014; Peterset al., 2014).

7. Conclusion

Fence-like texture present in the foreground of the image occludes the points of interest in
an image and is difficult to segment by directly applying conventional frequency filters used for
texture analysis. The proposed approach in this article segregates each fence texture by frequency
domain processing prior to wavelet transformation and the segmentation is achieved through sup-
port vector machine classification.

The proposed method works well for fence texture with different shapes, sizes, colours and
orientations. Fence texture detection was successful not only for images having fence in the fore-
ground but also for images having fence in the background.

As a sample application of the proposed approach, removal offences from zoo animal enclo-
sure images is presented. In addition to this, the proposed approach to de-fencing can be used for
any application, where the images are occluded with fence-like texture.
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