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Abstract

The focus of this article is on automatic detection of fencevise mesh (a form of quasi-periodic texture) in
images through frequency domain analysis. Textures carrdedly classified in to two general classes: quasi-
periodic and random. For example, a fence has a repetitiomgtic pattern, which can be classified as a quasi-
periodic texture. Quasi-periodic textures can be easitgaded in the frequency spectrum of an image as they result
in peaks in the frequency spectrum. This article explores@lhway of de-fencing viewed as a quasi-periodic texture
segmentation by filtering in frequency domain to segredagefénce from the background. A resulting de-fenced
image is followed by support vector machine classificatin. interesting application of the proposed approach is
the removal of occluding structures such as fence or wirehriteanimal enclosure photography.
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1. Introduction

This article introduces an algorithm to detect automaiicince or wire mesh structures,
which typically presentin the foreground of the image. Aioegn an image has a constant texture,
provided a set of local statistics or other local properbéshe picture function are constant,
slowly varying, or approximately periodid¢ceryan & Jain1993. A fence can be classified as a
texture in an image. Textures can be broadly classified iwaogeneral classegeriodicor more
generallyquasi-periodic textureandrandom textures
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According to Rangayyan2004), if there is a repetition of a texture element at almost l&agu
or quasi-periodic intervals, such textures can be cladségquasi-periodic or ordered and the
smallest repetitive element is called a texton or a texekamtrast if no such repetitive element
can be identified, those textures can be classified as random.

(Ohm, 2004 classifies textures asgular andirregular textures. Regular textures refer to tex-
tures, which exhibits strong periodic or quasi-periodibdngor. According toQhm, 2004, exact
periodicity is a very rare case mostly found in syntheticges The regular structures in natural
images are often quasi-periodic, which means that perjoaliern can clearly be recognized, but
have slight variations of periods. As it will be shown in sewt2, quasi-periodic textures are a
generalization of periodic textures.

Based on the above classifications, a fence structure, wiasha texture element repeating
at quasi-periodic intervals can be categorized as a quasdic texture. Hence, a fence-like
texture can be modeled as a quasi-periodic signal, whictvsipeaks in its power spectrum. It
is mentioned inChang & Kug 1993 that these kinds of quasi-periodic signals possess darhina
frequencies located in the middle frequency channels.

The perception of texture has numerous dimensions. Thusnéer of diferent texture repre-
sentations were introduced from time to time in order to anomdate a variety of textures. These
representations are categorizedTageryan & Jain1993 as statistical methods, which involves
co-occurrence matrices and autocorrelation featureange@ methods, model based methods
and signal processing methods. Signal processing methedsuadivided into spatial domain
filtering (Malik & Perong 1990 and frequency filtering.

Frequency analysis of the textured image is close to humesepton of texture as human
visual system analyzes the textured image by decomposeigidge into its frequency and orien-
tation componentdampbell & Robsonl1968. (Turner, 1986 and Clark et al., 1987 proposed
to use the Gabor filters in texture analysis. The Gabor fétarfrequency and orientation selective
filter. Another model, which is widely used for texture arsadyis wavelet transformChang &
Kuo, 1992 1993 Wilscy & Sasij 2010.

The focus of this article is on images, which are occludedvignce textures as shown in
figurel. In such cases, itis challenging to segment the fence fremet$t of the image, especially
when the image background is regular. Simple colour segatiens and edge detection does not
work in this case.

The traditional frequency filters used for texture analyS@bor and Wavelet cannot be directly
applied to extract fence texture in our scenario as the &eges correspond to both fence and the
background are present in the spectrum. Thus, we first perfi@gquency domain processing to
isolate fence texture from the background and subsequapylly Wavelet transform.

An interesting application of the proposed algorithm cardegection and removal of fence-
like textures obstructing the images in zoo photographygofding to many web articles on pho-
tography Stalking 201Q Masoney 2013, wire mesh and fences are a major challenge in zoo
photography. The algorithm proposed in this article watetefor fences with dierent shapes,
sizes, colours and orientations.

The rest of the article is organized as follows. Sectomtroduces quasi-periodic signals
and provides the mathematical background to analyze gpegdic signals in images. Secti@n
discusses the implementation of the quasi-periodic texdetection algorithm in three steps: (1)
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frequency domain filtering for quasi-periodic texture détm, (2) multiresolution processing for
fence mask formation and (3) fence segmentation through $\iskification. The experimen-
tal results of the proposed algorithm are given in Sectidar some zoo images as well as for
some challenging images from PSU NRT Databdse, (2007). A comparison of the proposed
method with existing fence detection techniques is giveseirtion followed by future work and
conclusion in section8 and7 respectively.

Figure 1. Images Occluded with Fence Textures.

2. Quasi-periodic Signals

Before going into details of quasi-periodic texture datatin images, understanding the math-
ematical background of quasi-periodic signals is impdrtan

Definition 2.1. Continuous-time Periodic Signak(Proakis & Manolakis2006 §1, p. 13))
By definition, A continuous signal f(t) locally defined on tketL?(9R) of finite energy signals is
fully periodic with period T, when the signal exactly saesfi

f(t) = f(t+T).

Definition 2.2. Continuous-time Quasi-periodic Signal(Martin et al,, 2010)
A signal fyp(t) is quasi-periodic with k periods,, ..., Ty when

fap(t) = g{fa(t), f2(1), ... f(®)},
where the k signal$ (t) are continuous periodic signals with respect to each gério

In the case of continuous functions locally defined on theL$€R) of finite energy signals,
guasi-periodic signals are a generalization of periodjoals. All the periods are required to be
strictly positive and to be rationally linearly indepenti@artin et al,, 2010.

Definition 2.3. Discrete-time Periodic Signgl(Proakis & Manolakis2006 §1, p. 15))
A discrete-time signal f(n) is periodic with period N, if andly if,

f(n) = f(n+ N) for all n.
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Based on the definition of continuous-time quasi-periodjoals, the definition for discrete-
time quasi-periodic signals can be derived.

Definition 2.4. Discrete-time Quasi-periodic Signal
A discrete-time signaf,(n) is quasi-periodic with k periods, ...N, when

fap(n) = g{ f1(n), f2(n), ..., fi(n)},

whereg : ZX — Z and the k signald;(n) are discrete-time periodic signals with respect to each
periodN;.

In the context of this paper, an image is considered as a aaliéstime signal. If we extend
the definition of 1D quasi-periodic signal to 2D quasi-pditosignal;

Definition 2.5. 2D Discrete-time Periodic Signd(Woods 2006 §1, p. 7))
A 2D discrete-time signal f(x,y) is periodic with period (NI, if and only if,

f(xy) = f(x+M,y) = f(x,y+ N),Vn,me Z.

Definition 2.6. 2D Discrete-time Quasi-periodic Signal
A 2D discrete-time signal,y(X, y) is quasi-periodic with k periodsMs, ...My, Ny, ...Nyx) when

fqp(X, y) = g{ fl(X’ y)’ fZ(X’ y)’ ceey fk(X’ y)},

where the k signaldi(x,y) are discrete-time periodic signals with respect to pexrifd;, N;).
Hence, a quasi-periodic signal can be defined as a comhinatiperiodic signals with incom-
mensurate (not rationally related) frequenciBat{ersby & Portal1996. If the frequencies are
commensurate, thefy, becomes a periodic signdkégey 2000.

A discrete-time quasi-periodic signal can be expressed avitourier series as given in defini-
tion 2.8 as a generalization of definitich7. 1D case will be considered for simplicity and it can
be extended to 2D.

Definition 2.7. Fourier Series of a Discrete-time Periodic fgnal ((Proakis & Manolakis2006
§4, p. 242))

N-1 .
2rkn
f(n) = chexp(J N )
k=0

Definition 2.8. Fourier Series of a Discrete-time Quasi-paodic Signal ((Regey 2006 p. 156))
The Fourier series of a r-quasi-periodic signal is givenRgdev 2000:

fapM = D" > Gk K EXP

ki ko ke

+ + ..+
N1 \ \"

j (Zyrkln 2rrkon an,n)]

where k=1,2,...,r and the frequencieg = 27/Ng are incommensurate.
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Theorem 2.1. Let f;p(n) be a discrete-time quasi-periodic signal. Then the fregyespectrum
of fyp(n) consists of a set of peaks determined by the fundamentaieinetes of each discrete
periodic signal component in the signal.

Proof. With w; = 21/N;, fyp(n) in definition2.8 can be re-written as
fae(n) = > cxexpljKQn],
K

whereK = (k, ks, ..., k) andQ = (wj, wo, ..., wy). Thus, the frequency spectrum contains numerous
peaks at all frequencies satisfying

2ny = K- Q| = |kKiw1 + Kows + ... + Kewy|,

for any combination of integets, ko, ..., k;. O

3. Quasi-periodic Texture Detection in Frequency Domain

3.1. Frequency Domain Filtering for Quasi-periodic TexdWetection

As proven by theorer.1, the Fourier spectrum of a quasi-periodic signal consisasiiscrete
set of spikes or peaks at a number of frequencies dependitigearumber of periodic signals it is
comprised of. Hence, based on theor2r the fence-like quasi-periodic structure should result
in peaks in the frequency spectrum of the image. The obgdaivthis section is to filter those
spikes in the frequency spectra relevant to the quasi-ghergignal in order to extract the fence
texture corresponding to the quasi-periodic signal froerdst of the image.

To achieve this, first start with the frequency domain repméstion of the 2D image. We will
be considering the DFT of an image.

M-1 N-1
o (UX vy
F(u,v) = F(x, y)ex [— 27r(— n —)] u=0,1,...M-1, =0,1,...N-1 3.1
();;(Y)DJMN (3.1)
To filter the frequencies showing spikes in the frequencespeit is necessary to perform
thresholding based on the magnitude of each frequency coempoA filter functionH,(u, v) in
frequency domain can be defined for this purpose as givembelo

_J1 if IF(u,v)| > T,
Ha(u,v) = { 0  otherwise,
where T is a threshold to filter spikes in frequency.
Once the thresholding is applied to the frequency companent

(3.2)

F’(u,v) = Hy(u, V)F(u, V)

Although, we filtered the frequency components correspanth peaks in the frequency spec-
tra, it is necessary to filter peaks in frequencies resuljedtber details in the image. For an ex-
ample, the DC component F(0,0), which can be derived by gubsg u=0 and 0 in equation
3.1 |F(0, 0)| typically is the largest component of the spectrum.



128 R. Hettiarachchi, et a). Theory and Applications of Mathemati&sComputer Science 4 (2) (2014) 1239

1 M-1 N-1 _
F(0.0)= N Zﬁ VZ; f(x,y) = MNT(x y).

The quasi-periodic signal in our case is the fence. Ferkeetdixtures typically result in gausi-
periodic signals whose dominant frequencies are locatéteimiddle frequency channelSi{ang
& Kuo, 1993. Therefore, by using a bandpass filter in frequency donmth&frequencies corre-
sponding to the fence can be filtered.

1 if D; < D(u,V) < D,
Ha(u,v) = { 0 otherwise

whereD; andD, are constants and D(u,Vv) is the distance between a pointifutkie frequency
domain and the center of the frequency spectrum.
Thus, the final result in frequency domain after applyinggeeond filter would be:

(3.3)

F”(u,v) Ho(u, V)F’(u, v),
H,(u, V)H1(u, V)F(u, v),

H(u, V)F(u, V),

whereH = H,Hj, since the application dfi; andH, can be considered as a cascade system.
WhenF”(u, V) is transferred back into spatial domain, the resultinggens given by:

1 M-1 N-1 ; - UX Vy
g(xy) = N Z Z F"”(u, v)exp[jZn(M + —)] x=0,1,...M-1, y¥+0,1,...N-1

N
u=0 v=0

It is important to note thaitl; andH, are zero phase shift filters, whiclfect the magnitude
of the frequency spectra, but do not alter the phase angleseTfilters fect the real (Re(u,v))
and imaginary (Im(u,v)) parts equally, thus cancels outrwbalculating phase anglgu,v) =
arctanIm(u, v)/R€u, v)].

Figure2(d) illustrates the final result of frequency domain filtgriexplained above. It can be
clearly seen that the fence texture is emphasized and otlagye details have been suppressed.

3.2. Multiresolution Processing for Fence Mask Formation

The human visual system analyzes the textured images bymbasing the image into its fre-
guency and orientation componen@aMmpbell & Robsonl968. Wavelet transformation provides
the ability to analyze images through multiresolution @ssing.

Wavelet transform in two dimension provides the two dimenal scaling functions(x, y)
and three two dimensional directionally sensitive wawajét(x, y), vV (x, y),#P(x,y) as given in
(Gonzalez & Richarg2002.

¢j,mn(X, y) = 2%¢(2jx —m, ij_ n)-

U mn(6Y) = 280421 = m 2ly - n),i = {H,V, D}.
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(a) Original Image (f(x,y)). (b) Filtered Peak Frequencies (F'(u,v)).

(c) Bandpassed Spectrum (F"(u,v)). (d) Spatial Domain (g(x,y)).

Figure 2. Frequency Domain Filtering for Fence Texture Segregatiomflmage
Background.

These wavelets measure intensity variations for imagesgadifferent directionsy mea-
sures variations along horizontal direction (along colgjnn’ measures variations along vertical
direction (along rows) ang® corresponds to variations along diagonals.

The discrete transform of image f(x,y) is:

M-1N-1
1

Wy(jo,mn) = —== 3" > (X V)¢ jomn(% Y).
MN x=0 y=0

N
. 1 M-1 N-1 '
W mn) = — DU YW a6 W), i = (H,V, D},
x=0 y=0

where jo is an arbitrary starting scale and tiié,(Jo, m, n) codficients define an approximation
of f(x,y) at scalejo. TheWiw(j, m, n) codticients add horizontal, vertical and diagonal details for
scalesj > jo. V\/jp(jo, m, n) codficients are called detail ciecients. Usuallyjg is set to zero.

For each level j, thresholding is performed on the detaiﬁfmbentsWL(j, m, n) to extract the
fence mask$1'(j, m, n) at each level j.

M'(j,m n) = { é gt\r/]\gr(\)\;ig]’en) > T;, whereT; is the threshold for levej,
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The final fence mask at level j is obtained by perform@igoperation of the vertical, horizon-
tal and diagonal fence masks at level j.

M(j, m.n) = MY(j,m.n) ® M"(j,m,n) @ M°(j, m,n).
The detected fence masks at 3 consecutive levels are shdigaia 3.

(&) M(1,m,n). . | (b) M(2,m,n). (c) M(3,m,n).

Figure 3. Detected Fence Masks at ThrediBrent Levels.

Next, the fence masks atftkrent levels of wavelet pyramid were combined by using assyar
to finer strategy. The objective is to reduce noise and expigels, which fall exactly on the fence.
In order to make the resultant mask in the same size as thearigage, a mask was created at
the zero level by just thresholding the spatial domain tesfftequency filtering (g(x,y)). Hence,
altogether we have fence masks at #atent levels in the pyramid.

First, the highest level fence mask (level 3) was considaretif a pixel belongs to the mask
then we move to the next lower level (level 2) and check fomtkighbouring children of the orig-
inal pixel. If any of the neighbouring children are mask fgxé¢hen recursively go and check for
their neighbouring children in the subsequent lower levElsally, when the algorithms reaches
the bottom most level (zero level), it marks the mask pixalslagiven that the neighbouring

children in the lowest level are mask pixels as well. The ltastifence mask is shown in Figure
4.

Figure 4. Fence Mask Formed by Combining Wavelet Decomposition lsevel
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3.3. Fence Segmentation through SVM Classification

Although the noise is minimized and the fence is emphasizéida detected fence mask, it is
not perfectly detected yet. However, the detected fencé mlassifies a good number of pixels,
which exactly falls on the fence in the image. This knowledgefence pixels can be used to
segment the fence. Hence, it was decided to pick some sarnpfeshe fence mask and use
the features of those sample pixels to tra@upport Vector Machine (SVM) classifiarorder to
segment the fence texture. A SVM classifier with a linear &eisiused in this case.

In addition to the samples from fence, it is necessary to pakples from background to
train the SVM classifier. For this purpose two root level 'emsasks were generated. One root
level mask was generated by selecting a very high threshaldlze other one is generated by
using a very low threshold. These masks were used as theewstrhask in the process of
combining wavelet decomposition levels as explained iige8.2separately in order to generate
two different final fence masks as shown in Figbre

As it can be clearly seen, the root level mask with high thoésigenerates a very thin final
mask, resulting points, which exactly lie on the fence. Gndther hand the root level mask with
low threshold generates a thick fence mask, which has somesgall on the background as well.

Figure 5. Two Fence Masks used for SVM Classification.

The thin mask was used to pick random samples, which représere class and the negation
of the thick mask (1-thick mask) is used to pick random sas)pldich represent the background
class. The use of negation of thick mask for background sausgiection reduces the chance of
picking fence pixels as background pixels and hence imrthweaccuracy of classification.

The feature vector selected for classification plays a vaportant role in this case as ffacts
the overall performance of the classification. The RGB cothannels and the gradient direction
of the samples were used as the feature set for classificalibe resultant fence mask can be
further improved with the help of morphological operations

The algorithm to achieve fence-like quasi-periodic textdetection in digital images is given
in Algorithm 1.
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Algorithm 1 Algorithm for fence-like quasi-periodic texture detectio images

Read the fenced imade
Convertl into frequency domain using Discrete Fourier Transforrntfie output bd-)
Filter F using the peak frequency filtét; defined in equatioB.2 (let the output beé-1)
Filter F1 using the band pass filtét, defined in equatioB.3(let the output bé-2)
ConvertF2 back into spatial domain (let the output fid )
Perform Wavelet decomposition diitl with three decomposition levels
for each Wavelet decomposition leas
Find vertical (V), horizontal (H) and Diagonal (D) compont&n
Threshold V, H and D with the same threshold
Combine thresholded V, H and D components using logical OfRaijon
. end for
> %comment: Obtain fence mask by combining all three levete®ivavelet pyramid (let
the output be fenceMask)%
12: Start from the highest Wavelet decomposition level (leyel 3
13: for each pixel in level 3lo

=

N aRrODN

el
B o

14: if a pixel belongs to the masken

15: Move to next lower level

16: if current level== lowest levelthen

17: Mark the pixel as mask pixels

18: Mark the neighbouring children as mask pixels
19: else

20: Check neighbouring children

21 if neighbouring children are mask pixéfen
22: Go back to step 14

23: end if

24: end if

25: end if

26: end for

27: Prepare the training data matrix using feature vectors wipéa pixels fall on fence (fence-
Mask==1) and background (fenceMask0).

28: Train the SVM classifier by using training data matrix of s&&p

29: Perform SVM classification by using the trained classifiestep 26 by giving original image
as the input to obtain final fence mask.
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(e) Flower Image. (f) Fence Mask for Flower Image.

Figure 6. Results of Fence-like Texture Detection in Images from PRT Watabase
(Liu, 2007).
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4. Experimental Results

The frequency domain-based fence-like quasi-perioditutexdetection algorithm proposed
in this article was implemented in Matlab R2013a and it waset with a number of images
with fence-like texture. Some test images were obtainet fA&&U Near-regular Texture database
(Liu, 2007. Images with fences of fferent shapes (square and diagonal), sizes, colours and
orientations were used for this experiment. FigbiiBustrates results of some of the challenging
cases encountered during experiments.

For the completion of the sample application chosen in thjgep, once the fence texture was
successfully detected and removed, the region, which gelbto the fence, should be filled with
relevant information in order to obtain the final image. On¢he techniques, which can serve
this purpose isnpainting According to Bertalmioet al., 2000, inpainting is themodification
of images in a way that is non-detectable for an observer wiesaot know the original image
There are numerous inpainting techniques introduced inlipasture.

For examples region filling and object removal by exempksda image inpainting by Crim-
inisi etal. Criminisiet al,, 20049, Fields of experts by Roth et aR6th & Black 2009 and Image
completion with structure propagation by Sun et 8uret al,, 2005. Among these techniques,
the exemplar based image inpainting technigoeninisi et al, 2004 was used to fill the fence
region in this approach. The results are given in figure

Interestingly, some image distortions can be observed pédorming inpainting for some
images. The region belonged to the fence texture is much difiteult to texture fill than large,
circular regions of similar area. The fence texture in tlaisecis usually wide spread in the whole
image. Thus, it requires the inpainting algorithm to calsepropagate and join tlierent types of
structures in order to fill this wide spread fence region. ¢éemistakes in structure propagation
can be quiet frequent in this case. The high ratio of foregdoarea to background area and the
fragmented background source textures may become chiltefag the inpainting technique.

5. Comparison with Existing Fence Detection Techniques

Most of the articles, which investigated the image de-fleggroblem, have used a texture
based approach to detect the fence, based on the assunhtiarfénce is a near regular structure.
(Liuy et al,, 2008 introduced an image de-fencing technique based on |atraeture of regular
textures in their article. The de-fencing algorithm pragobs (Liuy et al, 2008 consists of three
steps.(1) automatically finding the skeleton structure of a patdritontal layer in the form of a
deformed lattice; (2) classifying pixels as foreground ackground using appearance regularity
as the dominant cue, and (3) inpainting the foreground negiosing the background texture which
is typically composed of fragmented source regions to leae@omplete, non-occluded image
(Liuy et al,, 2008.

In the first step, to automatically detect the lattice of teece, Liuy et al, 2008 uses the
iterative algorithm explained irHayset al., 2006, which tries to find the most regular lattice for
a given image by assigning the neighbour relationships thatmeighbors have maximum visual
similarity. Step one results in a mesh of quadratiles, wisizhtains repeated elements or texels.
In the second step standard deviation of each colour chamaethe color features are used for k-
means clustering for background foreground separatioardar to obtain the standard deviation,
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Figure 7. Results of Fence Removal from Zoo Images.
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the texels were aligned and arranged in a stack and standaiatidn is calculated along each
vertical column of pixels. Finally, texture based inpamgtitechnique introduced by Criminisi et
al. (Criminisi et al,, 2004 2003 is used to obtain the final de-fenced image.

Park et al. revisits the image de-fencing problem in thepepaParket al, 2011). They
no longer uses the lattice detection algorithm introduce@Hayset al,, 2009, as they states its
performance is far from practical due to inaccuracy and s&sgs. Rather the implementation of
lattice detection algorithm irRarket al,, 2011) is similar to Parket al, 2009. In their method,
once the type of the repeating pattern is learnt, the ireggids are removed and the learned reg-
ularity is used in evaluating the foreground appearaneiikod during the lattice growth. They
have improved the lattice detection algorithm by introdigcn online learning and classification.

In essence, the de-fencing algorithms introduced in botthede articles uses a lattice de-
tection algorithm in order to find the fence mask. Thus, theesss of both algorithms depends
on finding the repeated element or texel in the fence strectilihe lattice detection algorithm
used by Liuy et al, 2008 has no measures against irregularities in the latticeenthié lattice
detection algorithm used byérket al., 2011) takes some measures to remove irregularities dur-
ing lattice growth. However, both these approaches deperitdeoregularity of the fence as well
as the irregularity of the background of the image. Altho(garket al., 2011) takes measures
against irregularities in the fence, it does not take in twaat the possibility of regularities in the
background. Furthermore, the lattice detection procssf is very complex and time consuming.

In contrast to the two methods discussed above, the methpddiead in this article uses a fre-
guency domain approach to address the fence detectiorepnoBlue to the uncertainty principle,
the global wide spread fence texture in spatial domain besdotal to a set of frequencies in the
frequency domain. So the processing required to extracketihee texture in frequency domain
is simpler and faster compared to spatial domain procesdihgg becomes advantageous in the
proposed method compared to the existing techniques. Mergthe band pass filtering in fre-
guency domain used in the proposed method helps to avoid m¢hedic structures (regularities)
in the background, which is not possible in existing teche&] The proposed method is robust
against deformations and irregularities in the fence textiue to SVM classification used in fence
segmentation phase.

The existing near regular lattice detection approache& wetl for some images and on the
other hand fail for some cases. They have observed that itheefaases are often accompanied
by sudden changes of colors in the background and obscubjegts in front of the fence. For
examples inl(iuy et al, 2008 method, the lattice detection fails for images (a) andridjigure
6 and for image (q) in Figuré. The proposed method is successful in detecting fencereekiu
all those images. A comparison of fence mask detected indflowage by Kiuy et al,, 2008
method and proposed method is given in Fig8ire

However, the proposed method fails to provide satisfactesylts for blurred images, espe-
cially when the fence is very much blurred. In such casesrpogssing to sharpen the fence may
give better results. Furthermore, fence segmentationmbesahallenging when the visual similar-
ity between fence pixels and background pixels becomes Ikigature set used for segmentation
has to be tuned to overcome such problems. Determining tineatdeature set is challenging in
such scenarios.



(a) Flower Image. (b) (Liuy et al, 2008. (c) Proposed Method.

Figure 8. Comparison of Fence Mask Detected for Flower Image.

6. Future Work

Fence texture segmentation becomes challenging, whes déinempixels with features similar
to fence pixels in the background. SVM classification usedfifal segmentation of the fence
texture in this article can be replaced with descriptiveihpattern generation described iRdters
& Hettiarachichj 2013. The accuracy of this phase can be further improved with behear set
theory Peters2013 Peters & Naimpally2012 Peters2014 Peterset al,, 2014).

7. Conclusion

Fence-like texture present in the foreground of the imag#udes the points of interest in
an image and is dlicult to segment by directly applying conventional frequefilters used for
texture analysis. The proposed approach in this articleegeges each fence texture by frequency
domain processing prior to wavelet transformation and #gerentation is achieved through sup-
port vector machine classification.

The proposed method works well for fence texture witfiedent shapes, sizes, colours and
orientations. Fence texture detection was successfulmyptor images having fence in the fore-
ground but also for images having fence in the background.

As a sample application of the proposed approach, removahoks from zoo animal enclo-
sure images is presented. In addition to this, the propgseach to de-fencing can be used for
any application, where the images are occluded with feikeetéxture.
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