COMP 1010- Summer 2015 (A01)

Jim (James) Young
young@cs.umanitoba.ca
jimyoung.ca

Trucking along...

Understanding programs:
computers have tunnel vision
explicit, one by one instructions
simplest approach to getting it:
you need to know what happens, in what order
re-visit the "hold up the roof" example

Hold the roof up!

Make a line that is falling down, like a roof, and hold it up with the mouse.

Each time you draw, move the line, so it draws in a new place next time

Use min or max to be sure that the line never goes below the mouse.

Hold up the roof!

int lineTop $=0$;
void setup()
\{
size(500,500);
\}
void draw()
\{
background(255);
lineTop $=\operatorname{lineTop}+1$;
lineTop = min(mouseY, lineTop);
line(0,lineTop,499,lineTop);
\}

Let's update the cat face program

$/ * * * * * * * * * * * * * * * * * * *$

* Cat Face! Draw a cat face on the screen
* author: Teo the dog
* version: try \#awesome
* purpose: to show how a cat can be drawn
********************/
// variables
int headCenterX = 250;
int headCenterY = 250;
int noseSize = 30;
int pupilWidth = 15;
int noseCenterX = headCenterX;
int noseCenterY = headCenterY+50;
size(500,500); // make a 500×500 canvas
//draw the head
ellipse(headCenterX,headCenterY,300,300);
//draw the ears
triangle(headCenterX+125,headCenterY-170, headCenter $X+50$,headCenter $Y-100$, headCenter $\mathrm{X}+150$,headCenterY-50);
triangle(headCenterX-125,headCenterY-170, headCenterX-50,headCenterY-100, headCenterX-150,headCenterY-50);
//draw the eyes
ellipse(headCenterX-75,headCenterY-25, pupilWidth*4,pupilWidth*2); // left eye
ellipse(headCenterX-75,headCenterY-25, pupilWidth,pupilWidth*2);
ellipse(headCenterX+75,headCenterY-25, pupilWidth*4,pupilWidth*2); // right eye ellipse(headCenterX+75,headCenterY-25, pupilWidth,pupilWidth*2);

//whiskers!

line(noseCenterX,noseCenterY,noseCenterX-50,noseCenterY-25); line(noseCenterX, noseCenterY, noseCenterX+50,noseCenterY-25); line(noseCenterX,noseCenterY,noseCenterX-60,noseCenterY); line(noseCenterX,noseCenterY,noseCenterX+60,noseCenterY); line(noseCenter X, noseCenter Y,noseCenter X-50,noseCenter $Y+25$); line(noseCenterX,noseCenterY,noseCenterX+50,noseCenterY+25);
// draw the nose. draw after whiskers for nice overlap effect ellipse(noseCenterX,noseCenterY,noseSize,noseSize);

Let's update the cat face program

- Keep the variables global: break code into setup and draw
- And clear background command
- Link nose to mouse
- Eyes?

new example:

Make a ball circle around
the mouse

We need trigonometry We need decimals
$-\quad$ -

integer is fine.. but I want fractions!

I WANT 5/2 to give me 2.5
I don't want to be restricted to integers...
what do I do???
you need a new data type that allows decimal portions...

Floating point!

why is it called floating point? (advanced)

 its scientific notation:first, we give a bunch of numbers:
e.g., 1234567
then, we tell it where to put the point:
e.g., after $4^{\text {th }}$ digit: 1234.567

$$
1.234567 \times 10^{3}
$$

5 before first digit: 0.000001234567 1.234567×10^{-6}
5 after last digit: 123456700000.0

$$
1.234567 \times 10^{11}
$$

we can store VERY small and VERY large numbers

aside: more globals

width
height

Carful! Only use those AFTER you set the canvas size.

How to make a floating point variable

Instead of: int variableName;
float variableName;

Use floats to draw 30% way across the screen float percent $=0.3$;

floating point variables

size $(500,500)$;
float percent $=0.3$;
float targetX $=$ percent*500;
line(0,250,targetX,250);

Change the example

float percent $=30 / 100$;

What happens?
Use println to investigate

Doesn't work!!

Processing still does integer division!!! why?? note: the right side of the assignment does not change based on the variable on the left!!
so.. why is $30 / 100$ giving an integer result? note: if the numbers in an operation are integers, the computer does integer arithmetic:
in programming speak: if the operands are integers, processing uses an integer operator

how to do floating point math?

note: if the numbers in an operation are integers, processing does integer arithmetic:
note: if either number in an operation is floating point, Java does floating point arithmetic how do we force 30/100 to be floating point? make either the 30 or the 100 a floating point:
30.0/100 or

30/100.0 or
30.0/100.0

Processing works one step at a time... (confusing but important)

what about $1.0+1 / 2 * 3.0$?
lets try it
why? - processing does it one step at a time.
Order of operations!
$1.0+1 / 2 * 3.0$
$1 / 2$-> int / int -> integer division -> 0
$1+0 * 3.0$
(this is floating point, since int * double)
$1+0.0$

Trigonometry and processing

Processing uses radians not degrees
Circle goes from 0..2PI
PI?
-> 180 degrees
$\mathrm{Pl} / 4$?
-> 45 degrees

Trigonometry and processing

New constant: PI (all caps)

New way to show you commands type commandName(type parameter);
float \sin (float radians)
float cos(float radians)
float \tan (float radians)

More trigonometry

We have inverse functions-> $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$
Also called arccos, arcsin, arctan.
float asin(float ratio)
float acos(float ratio)
float atan(float ratio)
ADVANCED: atan2 (see notes)

Back to our mouse orbiter!

Start with simple static case

Let's pick an angle, theta, and start at some point

We also need a radius - how far the ball will circle

Given a radius and an angle, what is the x, and y ?
$\sin (\theta)=y /$ radius

$$
y=\sin (\theta)^{*} \text { radius }
$$

$$
\begin{aligned}
\cos (\theta) & =x / \text { radius } \\
x & =\cos (\theta)^{*} \text { radius }
\end{aligned}
$$

It worked!! We can now place a ball at some distance and angle from the mouse

How to make it animate?

What did we do for mouse bubbles?

Every time we draw, adjust angle by a little delta

What about the angle getting too big? mod and floating point is messy... angles wrap around we're safe!

At home exercise:

Here is an extension you can try at home: expand this to having multiple planets orbiting the mouse at different speeds. Here are some helping steps:

- rename the variables to start with p1 for planet 1
- copy all your variables for each planet. Try three planets
- make each planet move at a different speed. What if one moves at a negative speed?

