
COMP 1010- Summer 2015 (A01)

Jim (James) Young
young@cs.umanitoba.ca

jimyoung.ca

mailto:young@cs.umanitoba.ca

For loop pitfalls

for (int i= 0; i>= 10; i++)
{
// do something
}
Loop is never run, because the test is false

For loop pitfalls

for (int i= 0; i<= 10; i--)
{
// do something
}
Loop keeps running because i doesn’t get > 10

For loop pitfalls
for (i= 0; i<= 10; i++)
{
// do something
}
The variable i is never declared

sum the odd numbers up until 50
 iterate over all the odd numbers from 1 to 50
for (initializer; condition; update)

initializer?
set a variable to 1, the first odd number
int i = 1;

condition?
loop while the variable is less than or equal to 50
i <= 50;

update?
increment i by 2 to get the next odd number
i+=2

for (int i = 1; i <= 50; i += 2)
sum += i;

count backwards with a for loop!!
what if you want to do…
for i from 20..1?
initializer: set i to the largest number

int i = 20;

condition: loop while i is bigger than or equal to 1.
i >= 1

update: reduce i by 1
i--

for (initializer; condition; update)

for (int i = 20; i >= 1; i--)
pritnln(i);

Exercise: Use a for loop to implement
the following:
Space 50 pixels apart

Make x get bigger by 50
each time in the loop

Data types and memory

bits and bytes and nibbles… (don’t memorize)
A computer stores everything as switches (bits)

represent 0 (off) and 1 (on).
A group of 8 bits (switches) makes a byte

00110110 one byte of data
A group of 4 bits (half a bite) make a nibble

(I kid you not!) 1101 is a nibble of data
1024 bytes (210) make a kilobyte
1024 kilobytes (220 bytes) make a megabyte
1024 megabytes (230 bytes) make a gigabyte
1024 gigabytes (240 bytes) make a terabyte
A terabyte has 1,099,511,627,776 bytes or

8,796,093,022,208 switches
using a 7cm standard light switch… 615 million KM
4 times the distance to the sun!!!!!!!!!!!!!

(aside: new standard units are moving to even powers of ten
where 1 terabte = 1,000,000,000,000 bytes)

Counting with bits!!!!! (not covered in
class, not testable)
0 -> 0
1 -> 1
How to represent “2”?

we need another bit. Put it in front
Start over..
00 // right column is 20 place
01
10 -> 2 // left column is 21 place
11 -> 3
100 -> 4 // left column is 22 place
What is 6?
110

data types so far

int (4B)

float (4B)

boolean (1B?)

integer overflows

“int” type in Processing stores 4 bytes of info
smallest number is -2,147,483,648
largest is 2,147,483,647 (try it!)

what happens when you go past these numbers
accidentally?

int (4B)

variable overflow

note: when you go over the specified maximum value
of an integer variable, the value wraps around to the
smallest value.
when you go below the specified minimum, it wraps in
the other direction.

quick comic

a data type that we do not use in this course,
called a short (a short integer), is 2 bytes (int is
4) and can hold the range -32,768…32,767

XKCD.com

exercise: infinite loop?

for (int i = 1; i > 0; i++) // infinite loop?
{

; // do nothing
}
background(255);
line(0,0,mouseX,mouseY);

is this an infinite loop?
lets test

!(infinite loop):

for (int i = 1; i > 0; i++) // infinite loop?
{

; // do nothing
}

this is not an infinite loop because i cannot get
infinitely large. It is limited by the memory of the int
data type. Once it hits the largest limit, adding one
will make it “roll over” to the smallest value,
making it less than 0.

two ways to avoid overflow:

1) use a different data type

2) be clever with your calculations to avoid large
numbers

Primitive data types: integers
type size minimum maximum

byte 1 byte -128 127

short 2 byte -32,768 32,767

int 4 byte -231 231-1

long 8 byte -263 263-1

All used like int
Integer math

Primitive data types: floating point

float – 4 bytes
double – 8 bytes

More memory is more precision, not more range
e.g.,
float - 0.6666667
double - 0.6666666666666666

primitives

boolean – true, false
char – store one character (later!)

Casting

conversion between types (casting)

we have int, long, float, double, etc., how
do they relate? how do we go between
them?

Try …

int i = 1234;
byte b = i;

What will happen?
1234 cannot fit into byte?

What about..
long l = 1234;
int i = l;

It just doesn’t fit!!

Processing knows that the int only has half the
memory. It doesn’t even try

It’s dangerous!

Narrowing conversion

int (4B)

Other direction

int small;
long large;
small = 15;
large = small; // Convert an int to a long!!

Widening conversion

long (8B)

casts

widening conversions automatically convert
(cast) the data types – this is called an implicit
cast

narrowing can result in the loss of data, so
Processing requires that you explicitly cast the
data to the new type

Example:
long large = 200;
int small = large;

Error: cannot convert
Processing is saying that you may lose data,
so it doesn’t want to do it.

int (4B)

Explicit cast:
put (type) in front of a variable or value

long large = 200;
int small = (int)large;

This tells Processing to convert
Just do it! I know what I’m doing!

int (4B)

floating point..

float is 4 bytes
double is 8 bytes
widening conversion is an implicit cast
narrowing conversion requires an explicit cast:

float f = 1.234;
double d = f;
float floatVariable = (float)doubleVariable;

float (4B)

double (8B)

converting between integer and
floating point types
floating point -> integer, data is lost so an
explicit cast is needed to make Java happy.
integer -> floating point, implicit cast because
floating point is more capable and can
accommodate the integer.

float (4B)

double (8B)long (8B)

int (4B)

Float -> integer

When explicitly cast to an integer, a floating
point number gets truncated. The decimal
portion is lost.
float f = 123.456;
int i = (int)f;
println(i);

	COMP 1010- Summer 2015 (A01)
	For loop pitfalls�
	For loop pitfalls�
	For loop pitfalls
	sum the odd numbers up until 50
	count backwards with a for loop!!
	Exercise: Use a for loop to implement the following:
	Data types and memory�
	bits and bytes and nibbles… (don’t memorize)
	Counting with bits!!!!! (not covered in class, not testable)
	data types so far
	integer overflows
	variable overflow
	quick comic
	exercise: infinite loop?
	!(infinite loop):
	two ways to avoid overflow:
	Primitive data types: integers
	Primitive data types: floating point
	primitives
	Casting
	conversion between types (casting)
	Try …
	It just doesn’t fit!!
	Other direction
	casts
	Example:
	Explicit cast:
	floating point..
	converting between integer and floating point types
	Float -> integer

