
COMP 1010- Summer 2015 (A01)

Jim (James) Young
young@cs.umanitoba.ca

jimyoung.ca

mailto:young@cs.umanitoba.ca


Back to our badguy example
final int MAX_MOVE = 20;
final int BG_COLOR = 0;
int badGuy1Size = 20; 
int badGuy1Color = 255;
int badGuy1X = 0;
int badGuy1Y = 0;

int badGuy2Size = 40; 
int badGuy2Color = 100;
int badGuy2X = 0;
int badGuy2Y = 0;

int badGuy3Size = 5; 
int badGuy3Color = 180;
int badGuy3X = 0;
int badGuy3Y = 0;

void setup()
{
size(500,500);

}

void drawBadGuy(int x, int y, int size, int col)
{
fill(col);
stroke(col);
rect(x, y, size, size); 

}

void draw()
{
background(BG_COLOR);

// bad guy 1
int move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy1X += move;
badGuy1X = min(badGuy1X, width-1);
badGuy1X = max(badGuy1X, 0);

move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy1Y += move;
badGuy1Y = min(badGuy1Y, height-1);
badGuy1Y = max(badGuy1Y, 0);

drawBadGuy(badGuy1X, badGuy1Y, badGuy1Size, badGuy1Color);

// bad guy 2
move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy2X += move;
badGuy2X = min(badGuy2X, width-1);
badGuy2X = max(badGuy2X, 0);

move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy2Y += move;
badGuy2Y = min(badGuy2Y, height-1);
badGuy2Y = max(badGuy2Y, 0);

drawBadGuy(badGuy2X, badGuy2Y, badGuy2Size, badGuy2Color);

// bad guy 3
move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy3X += move;
badGuy3X = min(badGuy3X, width-1);
badGuy3X = max(badGuy3X, 0);

move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy3Y += move;
badGuy3Y = min(badGuy3Y, height-1);
badGuy3Y = max(badGuy3Y, 0);

drawBadGuy(badGuy3X, badGuy3Y, badGuy3Size, badGuy3Color);
}



How can we simplify this?
// bad guy 1

int move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy1X += move;
badGuy1X = min(badGuy1X, width-1);
badGuy1X = max(badGuy1X, 0);

move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy1Y += move;
badGuy1Y = min(badGuy1Y, height-1);
badGuy1Y = max(badGuy1Y, 0);

See similarities? What if we call a function once for X and once for Y… 
something like
badGuy1X = doMove(badGuy1X, 0, width-1);
badGuy1X = doMove(badGuy1Y, 0, height-1);



Make the function
int move = (int)(random(MAX_MOVE*2)-MAX_MOVE);

badGuy1X += move;
badGuy1X = min(badGuy1X, width-1);
badGuy1X = max(badGuy1X, 0);

…
badGuy1X = doMove(badGuy1X, 0, width-1);
badGuy1Y = doMove(badGuy1Y, 0, height-1);

Header:
int doMove(int position, int minimum, int maximum)

Body:
copy the above but use the local variables



Rewrite the main code



Careful!
using non-final globals in a function!!
- hard to keep track of
- doesn’t scale well to larger programs

A function should accept changing, specific data as 
parameters

A function should return data through the return 
mechanism.

Be very very careful if your function is going to touch any 
global variables, as other code will need to expect those 
to change based on your function.



get data back from a function call 
by “return”ing it!

double addTax(double price) {
price = price * TAX_RATE;
return price;

}

Specific data
comes in!

Preferred way for data to come back!



function parameters and variables… 
data is always copied

double addTax(double price) {
price = price * 1.12;
return price;

}

void draw()
{

double lunch = 5.00;
println(addTax(lunch));
println(lunch); // what is output?

}

the information is copied
here. inside the method you 
only have a copy. changes here
do not reflect back!

the information is copied
here. 



function parameters and variables… 
data is always copied

double addTax(double price) {
price = price * 1.12;
return price;

}

void draw()
{

double lunch = 5.00;
println(addTax(lunch));
println(lunch); // what is output?

}

the output is 5.0. Although
the function modifies the
price variable, since only a
copy was passed in, the 
original was unchanged!



keep tunnel vision…..

double addTax(double price) {
//….
return?

}

forget the rest of your program and solve only the 
simpler problem in front of you……

think: I have “price”, and need to return a double
The rest of the program is irrelevant!



functions can call each other!
you can call user-defined methods from 
anywhere – even inside other methods!

make a program that tests if a string is a 
palindrome!

palindrome: a word that is spelt the same 
forwards as backwards

algorithm: reverse a word and compare it 
to the original



program structure

draw boolean isPalindrome(String) String reverseWord(String)


	COMP 1010- Summer 2015 (A01)
	Back to our badguy example
	How can we simplify this?
	Make the function
	Rewrite the main code
	Careful!�using non-final globals in a function!!
	get data back from a function call by “return”ing it!
	function parameters and variables… data is always copied
	function parameters and variables… data is always copied
	keep tunnel vision…..
	functions can call each other!
	program structure

