
COMP 1010- Summer 2015 (A01)

Jim (James) Young
young@cs.umanitoba.ca

jimyoung.ca

mailto:young@cs.umanitoba.ca

Hello!

James (Jim) Young
young@cs.umanitoba.ca
jimyoung.ca

office hours T / Th: 17:00 – 18:00
EITC-E2-582
(or by appointment, arrange by email)

Can we make a command like..

moveBadGuy(x, y, xmin, xmax, ymin, ymax)

moveBadGuy(badGuy1X, badGuy1Y, 0, width-1,
0, height-1)

No – since data is only copied in, any changes
that happen in that function are not reflected
back in our variables. It is thrown away.

What functions give us data back?
What do they look like?
max, min, random…
int result = max(10,4);

Functions can only return one piece of
data
They can give you an integer,
A float
A string
Etc.

Send data back from a function:
let’s make a function myMax(int a, int b) which gives
us an integer to represent the largest of the two:

int bigger = myMax(5, 2); // expect 5 to be the
answer

first – let’s implement this using the tools we already
have

we can calculate important information – but how do
we send it back?

Send data back from a function:
returnType functionName (parameterType parameterName)

int myMax(int a, int b) {
int result = a;
if (b>a)

result = b;
return result;

}

the return command does two things:
- it ends the function and returns to where it was called from
- it passes data along from the function to the caller

user-defined functions: syntax
int myMax(int a, int b) {

int result = a;
if (b>a)

result = b;
return result;

}

…
int max = myMax(10,20);

these are “local variables”, only exists
within the function. this name is not
related to how you can use the function

user-defined functions: syntax
int myMax(int a, int b) {

int result = a;
if (b>a)

result = b;
return result;

}

…
int max = myMax(10,20);

Exercise:

Make a function to calculate the distance
between two points.

another XKCD comic
remember random()??
how would you implement your own? tough..

Back to our badguy example
final int MAX_MOVE = 20;
final int BG_COLOR = 0;
int badGuy1Size = 20;
int badGuy1Color = 255;
int badGuy1X = 0;
int badGuy1Y = 0;

int badGuy2Size = 40;
int badGuy2Color = 100;
int badGuy2X = 0;
int badGuy2Y = 0;

int badGuy3Size = 5;
int badGuy3Color = 180;
int badGuy3X = 0;
int badGuy3Y = 0;

void setup()
{
size(500,500);

}

void drawBadGuy(int x, int y, int size, int col)
{
fill(col);
stroke(col);
rect(x, y, size, size);

}

void draw()
{
background(BG_COLOR);

// bad guy 1
int move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy1X += move;
badGuy1X = min(badGuy1X, width-1);
badGuy1X = max(badGuy1X, 0);

move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy1Y += move;
badGuy1Y = min(badGuy1Y, height-1);
badGuy1Y = max(badGuy1Y, 0);

drawBadGuy(badGuy1X, badGuy1Y, badGuy1Size, badGuy1Color);

// bad guy 2
move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy2X += move;
badGuy2X = min(badGuy2X, width-1);
badGuy2X = max(badGuy2X, 0);

move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy2Y += move;
badGuy2Y = min(badGuy2Y, height-1);
badGuy2Y = max(badGuy2Y, 0);

drawBadGuy(badGuy2X, badGuy2Y, badGuy2Size, badGuy2Color);

// bad guy 3
move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy3X += move;
badGuy3X = min(badGuy3X, width-1);
badGuy3X = max(badGuy3X, 0);

move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy3Y += move;
badGuy3Y = min(badGuy3Y, height-1);
badGuy3Y = max(badGuy3Y, 0);

drawBadGuy(badGuy3X, badGuy3Y, badGuy3Size, badGuy3Color);
}

How can we simplify this?
// bad guy 1

int move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy1X += move;
badGuy1X = min(badGuy1X, width-1);
badGuy1X = max(badGuy1X, 0);

move = (int)(random(MAX_MOVE*2)-MAX_MOVE);
badGuy1Y += move;
badGuy1Y = min(badGuy1Y, height-1);
badGuy1Y = max(badGuy1Y, 0);

See similarities? What if we call a function once for X and once for Y…
something like
badGuy1X = doMove(badGuy1X, 0, width-1);
badGuy1X = doMove(badGuy1Y, 0, height-1);

Make the function
int move = (int)(random(MAX_MOVE*2)-MAX_MOVE);

badGuy1X += move;
badGuy1X = min(badGuy1X, width-1);
badGuy1X = max(badGuy1X, 0);

…
badGuy1X = doMove(badGuy1X, 0, width-1);
badGuy1Y = doMove(badGuy1Y, 0, height-1);

Header:
int doMove(int position, int minimum, int maximum)

Body:
copy the above but use the local variables

Rewrite the main code

Avoid using non-final globals in a
function!!
- hard to keep track of
- doesn’t scale well to larger programs

A function should accept any changing, specific data
as parameters

A function should only return data through the
return mechanism.

no side effects

Only use global constants

get data back from a function call
by “return”ing it!

double addTax(double price) {
price = price * TAX_RATE;
return price;

}

Specific data
comes in!

Preferred way for data to come back!

function parameters and variables…
data is always copied

double addTax(double price) {
price = price * 1.12;
return price;

}

void draw()
{

double lunch = 5.00;
println(addTax(lunch));
println(lunch); // what is output?

}

the information is copied
here. inside the method you
only have a copy. changes here
do not reflect back!

the information is copied
here.

function parameters and variables…
data is always copied

double addTax(double price) {
price = price * 1.12;
return price;

}

void draw()
{

double lunch = 5.00;
println(addTax(lunch));
println(lunch); // what is output?

}

the output is 5.0. Although
the function modifies the
price variable, since only a
copy was passed in, the
original was unchanged!

keep tunnel vision…..

double addTax(double price) {
//….
return?

}

forget the rest of your program and solve only the
simpler problem in front of you……

think: I have “price”, and need to return a double
The rest of the program is irrelevant!

functions can call each other!
you can call user-defined methods from
anywhere – even inside other methods!

make a program that tests if a string is a
palindrome!

palindrome: a word that is spelt the same
forwards as backwards

algorithm: reverse a word and compare it
to the original

program structure

draw boolean isPalindrome(String) String reverseWord(String)

Divide and conquer

divide and conquer

Divide and Conquer: a great way to break up a
complex programming problem into smaller
steps

as your programs get longer and longer, this
provides a method to enable you to focus on
one piece at a time.

Example problem: spaceship shooter
The space ship is linked to the mouseX.
If the mouse button is pressed, the ship
fires a bullet up.
If the user clicks while a bullet is flying,
nothing happens.
If a bullet hits the bad guy, game over

Divide and conquer:
think about the problem in English
first.
turn these steps into new
commands
focus on one element at a time

Let’s implement our sample problem
step 1: write the program as a series of steps in
comments, in English

2: turn each step into a function name (command)

3: create the empty functions

4: start implementing the functions

Steps…

• Draw a title at the top of the screen
• Move and Draw the spaceship
• Check If the spaceship should shoot, and if so,

start a bullet
• Move and Draw the Bullet
• Move and Draw the bad guy
• Check if the bullet hit the bad guy, and if so, stop

the game
• Draw “WIN” if the game is over.

Let’s implement our sample problem
step 1: write the program as a series of steps in
comments, in English

2: turn each step into a function name (command)

3: create the empty functions

4: start implementing the functions

Turn these steps into commands
//Draw a title at the top of the screen
drawTitle();

//Move and Draw the spaceship
moveAndDrawShip();

//Check If the spaceship should shoot, and if so, start a bullet
checkAndDoShoot();

//Move and Draw the Bullet
moveAndDrawBullet();

//Move and Draw the bad guy
moveAndDrawBadGuy();

//Check if the bullet hit the bad guy, and if so, stop the game
checkBulletHit();

//Draw “WIN” if the game is over.
drawWinMessage();

Let’s implement our sample problem
step 1: write the program as a series of steps in
comments, in English

2: turn each step into a function name (command)

3: create the empty functions

4: start implementing the functions

Assuming these commands work,
everything makes sense
Think of the program as a high-level flow

Overview of the program, in
Your draw loop..
Details on the right

Let’s implement our sample problem
step 1: write the program as a series of steps in
comments, in English

2: turn each step into a function name (command)

3: create the empty functions

4: start implementing the functions

	COMP 1010- Summer 2015 (A01)
	Hello!
	Can we make a command like..
	What functions give us data back?�What do they look like?
	Functions can only return one piece of data
	Send data back from a function:
	Send data back from a function:
	user-defined functions: syntax
	user-defined functions: syntax
	Exercise:
	another XKCD comic
	Back to our badguy example
	How can we simplify this?
	Make the function
	Rewrite the main code
	Avoid using non-final globals in a function!!
	get data back from a function call by “return”ing it!
	function parameters and variables… data is always copied
	function parameters and variables… data is always copied
	keep tunnel vision…..
	functions can call each other!
	program structure
	Divide and conquer
	divide and conquer
	Example problem: spaceship shooter
	Let’s implement our sample problem
	Steps…
	Let’s implement our sample problem
	Turn these steps into commands
	Let’s implement our sample problem
	Assuming these commands work, everything makes sense
	Let’s implement our sample problem

