
COMP 1010- Summer 2015 (A01)

Jim (James) Young
young@cs.umanitoba.ca

jimyoung.ca

mailto:young@cs.umanitoba.ca

Hello!

James (Jim) Young
young@cs.umanitoba.ca
jimyoung.ca

office hours T / Th: 17:00 – 18:00
EITC-E2-582
(or by appointment, arrange by email)

Make it rain

Make the drops evenly spread
out
Make one array:

bin number is x coordinate
value stored is y coordinate

Calculate a random y for each
point.

Random number of dots

Calculate the number of dots in startup
define but don’t instantiate array

Also, need a rain-drop length, as we
draw streaks

Initialize in startup code

At least 500 drops, and some random
amount more – use a local int variable

- create the array
- set the bins to random values (height)

Note that the length of the array was a
local variable – in the draw, we ONLY have
the .length property to help us.

Draw!

Go through each rain drop
x is i%width
y is data in the bin
use the length of the drop
draw the drop!

Animate!!

Add some y value.
Let’s make it look layered. Use the following
formula

drops[i]=(drops[i]+i%3+1)%height;

Exercise: figure it out
Exercise – make slanty rain

Grey is boring. Make the rain colorful!

stroke(random(256),0,random(256));

Array Initialization with Literals

arrays and literals..
reminder: a literal is a value typed directly into a
program, and is not calculated:

int i = 1; // 1 is a literal
float f = 3.14; // 3.14 is a literal
final String PROMPT = “gimme a number”;

// “…” is a literal
double d = i*f; // no literal here

int[] intArray = <a literal>;

We often like to pre load an array with
values
We make the array. We store some data into it.
E.g.,
Make an array with the days of the week stored.

Remember our calendar example?
final int CAL_TOP = 100;
final int CAL_LEFT = 100;
final int CAL_DAYS = 31;
final int CAL_SPACE = 30;
int selected = 0;
void setup()
{
size(500, 500);

}

void draw()
{
background(0);
fill(255);
// draw title bar
int bottom = CAL_TOP+CAL_SPACE;
int left = CAL_LEFT;
text("S", left, bottom);
left += CAL_SPACE;
text("M", left, bottom);
left += CAL_SPACE;
text("T", left, bottom);
left += CAL_SPACE;
text("W", left, bottom);
left += CAL_SPACE;
text("R", left, bottom);
left += CAL_SPACE;
text("F", left, bottom);
left += CAL_SPACE;
text("S", left, bottom);
left += CAL_SPACE;

boolean hit = false;
for (int day = 1; day<= CAL_DAYS; day++)
{
int col = day%7;

int row = day/7+1;

left = CAL_LEFT+CAL_SPACE*col;
int right = left+CAL_SPACE;
int top = CAL_TOP+CAL_SPACE*row;
bottom = top+CAL_SPACE;

if (mousePressed &&
mouseX >= left && mouseX < right &&
mouseY >= top && mouseY < bottom)

{
selected = day;
hit = true;

}

if (selected == day)
{
rect(left, top, CAL_SPACE, CAL_SPACE);
fill(0);

} else
{
fill(255);

}
text(str(day), left, bottom);

}
if (mousePressed && !hit)
{
selected = 0;

}
}

Remember our calendar example?
Ugly code – update by using an array to store
the days of the week

Much better! But still that ugly array
initialization looks clunky

literal array initialization
type[] variableName = { element, element, …,

element};

NOTICE the curly brackets!

e.g.,
int[] evenNumbers = { 2, 4, 6, 8, 10, 12, 14};
boolean[] isPrime = { false, true, true, true, false, true};
String[] names = { “John”, “Jack”, “Joe”, “Jim” };

literals and memory (new)
note: literals do not require the “new” keyword to
create them – it is automatically created with your
values:

double [] measurements = {4.22, 11.1, 123.4};
is equivalent to:
double [] measurements = new double[3];
measurements[0] = 4.22;
measurements[1] = 11.1;
measurements[2] = 123.4;

Update calendar example

Arrays and memory

reminder
note: an array is a list of data of a given type
in processing: you must

1) declare an array variable
2) instantiate a new array (create it!)

type [] variableName; // declare
variableName = new type[size]; // instantiate

int [] intvariable = new int[500];

why two stages??
note: IMPORTANT: the array variable does not
store the array.
The array can have all kinds of sizes, so the
computer stores it in it’s general memory, not your
variables.
When you make an array (new), the computer
“allocates” some memory for you.
But you need to keep track of where that is!
The variable stores an address of where the array is
located in computer memory!!

Again:

int[] intArray;

intArray = new int[100];

intArray?

We can print the actual memory address using a silly trick:
println(“”+intArray); // don’t memorize

1GB RAM!

(modern looking computer)

holds array
address

grabs a piece of
memory

int[100]

address of
int[100]

address of
int[100]

This becomes very important soon
when using arrays with functions,
copying them, or for comparing. For
now, just remember the variable
stores the address, the array is in
memory somewhere

What happens?

int variable;
println(variable);

Processing works hard to check if a variable has
been initialized. Not trivial.

Gets harder with arrays!
Processing avoids the issue – fills arrays with
default values

default value of array entries??

if you create an array, but do not set the bins to any value…
what’s stored in the bins by defualt?

depends in the type!
default for numerical:

0, 0.0
default for boolean?

false
default for String?

null! no string!

int i[] = new int[100]!
0 1 2 3 … 99int[100]

println(i[5])!!

null
null [nʌl]adj
1. without legal force; invalid; (esp in the phrase null
and void)
2. without value or consequence; useless
3. lacking distinction; characterless a null expression
4. nonexistent; amounting to nothing

null!
null cannot be used for primitives!

int i = null; // error, requires an int!!
float f = null; // error, requires a double!
boolean b = null; // error, requires a bool
char c = null; // error!! requires a character

reminder: a variable type starting with a Capital
represents an object:

String
note: objects and arrays can be set to null

int[] someArray = null; // valid but not usable!

null and memory - Strings??
String s = “hey there”;

s?

s = null;

4GB RAM!

(modern looking computer)

hey thereaddress of “hey there”

no
address

String – empty string?
String s = “”;

s?

4GB RAM!

(modern looking computer)

“”

address of
string

default value of array entries!

default for numerical:
0, 0.0

default for boolean?
false

default for String?
null! no string!

String[] s = new String[100]!
0 1 2 3 … 99string[100]

println(s[5])!!

Default values: careful!

This is a Processing and Java thing! Not all
languages treat this the same.

copy an array

reminder: to copy an int or float?
int i = 1982;
int j = i; // copy i into j
i = 1999;
println(i+ “ “+j); // what is the output?

the output is: “1999 1982”

lets do something similar with an array
int[] i = {1, 2, 3};
int[] j = i; // copy i into j..?
i[0] = 1999;
println(i);
println(j);

what happened?
int[] i = {1, 2, 3};
int[] j = i; // copy i into j..?
i[2] = 1999;

note: array variables only
record the address, or the
reference to the array off in
computer memory. When
you copy the variable, you
only copy the reference, not
the array.

4GB RAM!

(modern looking computer)

int[]={1,2,3}int[]={1,2,1999}

goal: what we wanted
int[] i = {1, 2, 3};
int[] j = i; // copy i into j..?
j[2] = 1999;

how would we achieve this?

1.create a new array in memory
2.copy the contents over yourself

4GB RAM!

(modern looking computer)

int[]={1,2,3}

int[]={1,2,3}int[]={1,2,1999}

1. Create – existing syntax
2. Copy – use a for loop

comparing arrays

compare arrays!
int[] i = {1,2,3};
int[] j= {1,2,3};
println(i==j); // ?
note: this only compares if i and j reference
the same memory location. If they point to
the same place.

note: There is no built in function for arrays
for comparison – we usually write the
comparison ourselves.

4GB RAM!

(modern looking
computer)

{1,2,3}

{1,2,3}

array comparison algorithm.

go from left to right through the array indices
- at each index (box), compare the data in
one array to the other array at the same
index

- if they are not equal, stop checking

use a for loop to go through the indices..

array comparison algorithm - detailed

boolean equals = true; // assume they are equal
for (int i=0; i < array.length; i++) {

if (data not equals) // pseudo code
equals = false;

}

array comparison algorithm.

use a for loop to go through the indices..
how to quit early?

use an additional boolean in the test
condition

array comparison algorithm - detailed

boolean equals = true; // assume they are equal
for (int i=0; i < array.length; i++) {
for (int i=0; i < array.length && equals; i++) {

if (data not equals) // pseudo code
equals = false;

}

	COMP 1010- Summer 2015 (A01)
	Hello!
	Make it rain
	Random number of dots
	Initialize in startup code
	Draw!
	Animate!!
	Grey is boring. Make the rain colorful!
	Array Initialization with Literals
	arrays and literals..
	We often like to pre load an array with values
	Remember our calendar example?
	Remember our calendar example?
	literal array initialization
	literals and memory (new)
	Update calendar example
	Arrays and memory
	reminder
	why two stages??
	Again:
	This becomes very important soon when using arrays with functions, copying them, or for comparing. For now, just remember the variable stores the address, the array is in memory somewhere�
	What happens?
	default value of array entries??
	null
	null!
	null and memory - Strings??
	String – empty string?
	default value of array entries!
	Default values: careful!
	copy an array
	reminder: to copy an int or float?
	lets do something similar with an array
	what happened?
	goal: what we wanted
	Slide Number 35
	comparing arrays
	compare arrays!
	array comparison algorithm.
	array comparison algorithm - detailed
	array comparison algorithm.
	array comparison algorithm - detailed

