
COMP 1010- Summer 2015 (A01)

Jim (James) Young
young@cs.umanitoba.ca

jimyoung.ca

mailto:young@cs.umanitoba.ca

Hello!

James (Jim) Young
young@cs.umanitoba.ca
jimyoung.ca

office hours T / Th: 17:00 – 18:00
EITC-E2-582
(or by appointment, arrange by email)

Example: wandering star

What if we want the points to go back to their
original spot if we click the mouse?

How can we save the original points??

Make another set of arrays
- instead of making the original points wander

around, work with a copy – the original sticks

- When the mouse is pressed, copy the originals
into the copy arrays

passing arrays to and from functions

pass arrays to/from function
note: array variable types can be used the same as
any variable:

type[] someFunction(type[] somevariable){…

e.g., make a function that returns an int array of
size n, with data from 1..n.

int[] makeArray(int n) {…

Use it in your program, draw lines from the points
(array[i], 0) to the mouse.

Make a function to draw the points

The header is as normal: take the array as a
parameter:

void drawLines(int[] xValues)

Arrays, functions, and memory

What happens here? Is this okay?
int[] numbers = new int[1];
void setup()
{

numbers = makeArr(10);
numbers[9]++;

}

int[] makeArr(int n) {
int [] data = new int[n];
for (int i = 0; i < data.length; i++) {
data[i] = i+1;

}
return data;

}

Just to peek… modify to print out the
memory addresses
int[] numbers = new int[1];
void setup()
{

println(""+numbers);
numbers = makeArr(10);
println(""+numbers);
numbers[9]++;

}

int[] makeArr(int n) {
int [] data = new int[n];
for (int i = 0; i < data.length; i++) {

data[i] = i+1;
}
return data;

}

int[] numbers = new int[1];
void setup()
{

println(""+numbers);
numbers = makeArr(10);
println(""+numbers);
numbers[9]++;

}

int[] makeArr(int n) {
int [] data = new int[n];
for (int i = 0; i < data.length; i++) {
data[i] = i+1;

}
return data;

}

4GB RAM!

int[1] = {0}

int[10] = {0,…,0}int[10] = {1,…,10}

example: generate first n Fibonacci
numbers

remember: Fibonacci numbers are a sequence :
0, 1, 1, 2, 3, 5…
F0 = 0,
F1 = 1,
Fn = Fn-1 + Fn-2

int[] fibonacciSequence(int n){

Visualize…

Draw circles with the radii as the Fibonacci
numbers.
Put all the code in the setup

– not interactive

Questions..

int[] fib = fibonacci(COUNT);

Wait! I just created the variable and did not
instantiate the array.. Is this okay?

changing values in a function….
consider:
void setup() {

int i = 15;
printInflation(i);
println(i);

}

void printInflation(int number) {
number += 1;
println(number);

}

output:
16
15

The function does not alter
the value of int i in setup
because when printInflation
is called, a copy of i is made

changing array values in a function….
void setup() {

int i[] = {1, 2, 3};
printInflationArry(i);
println(i[0]);

}

void printInflationArry(int[] intarray) {
intarray[0] += 1
println(intarray[0]);

}

output:
2
2

Why does this happen???

Function calls only pass the reference
to the array, the address. The entire
array is not copied and passed
void setup() {

int i[] = {1, 2, 3};
printInflationArry(i);
println(i[0]);

}

void printInflationArry(int[] intarray) {
intarray[0] += 1
println(intarray[0]);

}

4GB RAM!

{1,2,3}{2,2,3}

consider…
void setup() {

int i[] = {1, 2, 3};
makeNewArray(i);
println(i[0]);

}

void makeNewArray(int[] intarray) {
intarray = new int[3];
intarray[0] = 5;
println(intarray[0]);

}

output:
5
1

Why does this happen???
the old array didn’t
change..

function passes the reference to the
object. the original variable is
unchanged
void setup() {

int i[] = {1, 2, 3};
makeNewArray(i);
println(i[0]);

}

void makeNewArray(int[] intarray) {
intarray = new int[3];
intarray[0] = 5;
println(intarray[0]);

}

4GB RAM!

{1,2,3}

{0,0,0}{5,0,0}

Example::

In this example, we will
- create an array in a function, and return it
- modify an array in a function
- send multiple arrays to a function

Make a random collection of dots that
you can steer with the keyboard
Create a function newRandomArray that takes
an n, the number of bins, and max, the largest
value

- creates the array
- fills with random values
- returns the array

Use it in setup to set globals for x and y points

Next..

Make a function drawPoints that takes x, and y
arrays, and draws the points

Takes arrays and uses them

next
Make a function, addToArray, that takes an array
and an integer value, and adds that value to
every bin

This modifies the array in the function

In draw:
if mouse pressed, new random arrays
if key pressed, check for u,d,l,r and move

Techniques with Arrays

partially filled arrays

partially filled arrays
note: when you first create an array, the default
data is generally useless to you: you need to put
data into the array

until now, all of our arrays were fully populated
immediately

6 1 -19 41 3int[]

T T F T Fbool[]

partially filled arrays:
note: a partially filled array is an array that has
data in some bins but not in others.

the challenge becomes identifying which bins
have data, and which do not.

6 1 X X Xint[]

1.1 3.0 .9 .1 Xdouble[]

5 10

simple technique for filling up an array

go left to right,
keep a pointer to the next empty spot

use pointer each time to decide where to put the
next element

X X X X … Xint[100]

0 1 2 3 … 99

next empty

	COMP 1010- Summer 2015 (A01)
	Hello!
	Example: wandering star
	How can we save the original points??
	passing arrays to and from functions
	pass arrays to/from function
	Make a function to draw the points
	Arrays, functions, and memory
	What happens here? Is this okay?
	Just to peek… modify to print out the memory addresses
	Slide Number 11
	example: generate first n Fibonacci numbers
	Visualize…
	Questions..
	changing values in a function….
	changing array values in a function….
	Function calls only pass the reference to the array, the address. The entire array is not copied and passed
	consider…
	function passes the reference to the object. the original variable is unchanged
	Example::
	Make a random collection of dots that you can steer with the keyboard
	Next..
	next
	Techniques with Arrays
	partially filled arrays
	partially filled arrays
	partially filled arrays:
	simple technique for filling up an array

