
COMP 1010- Summer 2015 (A01)

Jim (James) Young
young@cs.umanitoba.ca

jimyoung.ca

mailto:young@cs.umanitoba.ca

Hello!

James (Jim) Young
young@cs.umanitoba.ca
jimyoung.ca

office hours T / Th: 17:00 – 18:00
EITC-E2-582
(or by appointment, arrange by email)

searching

searching…

note: searching, in general, is a fundamental
problem of computer science. It is difficult, it is
slow, it is everywhere:

a person logs in: does their password match?
you shoot a bad guy: do you hit them?
you load a website…
you ask google something…

google is fast!

linear search versus binary search

two methods for searching an array for a given
value: one is much faster than the other

note: speed matters!

linear search – search a stack of papers
simple: check every element until you find it. Order
doesn’t matter

if element not in array?
you must check every element first to be
sure!

worst case: have to look at every element!
best case: first element is what we want, 1 check
average case: search half way through and find

Example: lotto tickets
Let’s do a lotto search – hand out 1 million
random but unique tickets, draw a ticket, and
see if that ticket exists.

Ticket generation method:
make an array – 1 bin per ticket
go left to right in the array
add a random space from the prev ticket
place the ticket in the array

1 2 5 8 9int[] tickets

Make the function:

handOutTickets –
takes an array and fills with tickets, with
random space between them (up to 3)
returns the largest ticket number so we
know what range is possible.

In setup, hand out the tickets.

implement a method to perform linear
search
function: take an array and a target, return the
index of the target if found

aside:: what to return if not found?

-1 is a good default because it is outside the
range of possible valid values. we want to return
the index into an array, and -1 is impossible. be
careful with choosing a value that could be valid,
e.g., 5000, 9999, or 0.

Let’s visualize

Draw a number line
Each time a number is
checked, draw a tick mark

Globals and functions

Left of line, line width, tick height
drawLine (at a specific y)
drawTick (for data, at a specific y)

- way more bins than pixels, need to
scale)

Setup our draw:

Clear background
Generate a random ticket!
Do the linear search (and save the result)
Print out text telling us the result

--- need to update linear search to draw tick
marks at bins searched.

structured data
if we can assume that data is structured in some
sort of helpful way, we can often leverage this for
searching

searching for a page in a book
does it make sense to start at p1 and check
every one along the way? e.g., find page 280

we assume structure and leverage this for
more efficient searching

structured data – binary search

if we assume that an array is already sorted
smallest to largest, we can perform binary search

the key to binary search is that we can ignore
whole sections of the array without checking them,
because we can make assumptions about it.

binary search
- assume the data array is already sorted
- look half way in the middle and compare to

target
- if smaller or larger, we can discount half the

data instantly!
- in each step, we can cut the remaining data in

half – much more efficient than linear search

smallest largest

target: 15

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

２５

binary search algorithm
repeat:

find the midpoint between the start and end
location is (start index + end index) / 2
test data at midpoint against target

start end

midpoint

binary search algorithm
repeat:

find the midpoint between the start and end
location is (start index + end index) / 2
test data at midpoint against target

if data > target, cut right half
end = midpoint - 1

start end

> target

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

midpoint

end

midpoint

binary search algorithm
repeat:

find the midpoint between the start and end
location is (start index + end index) / 2
test data at midpoint against target

if data < target, cut left half
start = midpoint + 1

start end

< target

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

midpoint

start

midpoint

binary search algorithm – end case
a) we find the target
b) there is no target:

end

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

start

midpoint

XXXXXXXXXXXXXXXXX

binary search algorithm – end case
a) we find the target
b) there is no target:

end

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

start

midpoint

XXXXXXXXXXXXXXXXXXXXXXX

binary search algorithm – end case
a) we find the target
b) there is no target:

end

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

start

midpoint

XXXXXXXXXXXXXXXXXXXXXXX XXXXXX

binary search algorithm – end case
a) we find the target
b) there is no target:

eventually start > end, (or end < start, same thing)

end

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

start

midpoint

XXXXXXXXXXXXXXXXXXXXXXX XXXXXX

Implement and play with it!

search – how much work?
Algorithm Data Size Best

Case
Worst Case 10

elements
1,000

elements
1,000,000,000

Linear
Search

n 1 check n checks 10 1000 1,000,000,000

Binary
Search

n 1 check ~log(n) checks ~4 ~10 ~30

If you stay in computer science, a key theme becomes algorithms like
these, and specific data structures like a sorted array, all of which
help manage large amounts of information and information queries.

1,000,000,000,000,000,000,000,000 ?
80 checks
Vs 30 million years on 3ghz machine

WELCOME

to the end of the course!

in this course we learned Processing

but programming is programming, and the
concepts you learn transfer to other languages

note: Pseudo-code: compute code that
describes an algorithm in programming terms,
but is not necessarily a specific langauge.

I bet you can read other languages pretty easily

pseudocode

for j ←1 to length(A)-1
key ← A[j]
i ← j - 1
while i >= 0 and A [i] > key

A[i +1] ← A[i]
i ← i -1

A [i +1] ← key

the Pascal language
Uses math;

var
endPoint, startPoint, midPoint, target, indexFound : Integer;
data : Array[0..11] of Integer = (1,1,1,1,2,4,5,5,10,90,100,1000);

Begin
startPoint := 0;
endPoint := Length(data)-1;
target := 101;
indexFound := -1;

while (startPoint <= endPoint) AND (indexFound = -1) do
begin
midPoint := Floor((startPoint + endPoint) /2);

if data[midPoint] = target then
indexFound := midpoint

else if data[midPoint] < target then
startPoint := midPoint+1

else
endPoint := midPoint -1;

end;
writeln(indexFound);
End.

	COMP 1010- Summer 2015 (A01)
	Hello!
	searching
	searching…
	google is fast!
	linear search versus binary search
	linear search – search a stack of papers
	Example: lotto tickets
	Make the function:
	implement a method to perform linear search
	Let’s visualize
	Globals and functions
	Setup our draw:
	structured data
	structured data – binary search
	binary search
	binary search algorithm
	binary search algorithm
	binary search algorithm
	binary search algorithm – end case
	binary search algorithm – end case
	binary search algorithm – end case
	binary search algorithm – end case
	Implement and play with it!
	search – how much work?
	WELCOME
	in this course we learned Processing
	pseudocode
	the Pascal language

