

Page 335 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 ARRAYS AND FUNCTIONS

Summary
You will learn about how arrays can be used with functions. Specifically

 Basic syntax for using arrays with functions
 How arrays are stored in memory impacts how they are used with functions
 How arrays can be modified inside functions

Learning Objectives
After finishing this unit, you will be able to …

 Use arrays as parameters to functions
 Use arrays as return types from functions
 Create a new array inside a function
 Modify the data in an array in a function

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 336 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Introduction

On the surface, arrays and functions are straightforward and nothing new. Array
types can be used like any other type, so we can use it as a return type or parameter:

For example, let’s make a function to generate an array of size n, with the numbers
1..n in the bins. The header looks like

Once inside the function, we make a new array, use a for loop to fill it with the
numbers 1..n, and return it. Watch out for an off-by-one error, i.e., bin 0 has 1, bin
1 as 2, …, bin i has i+1, … bin n-1 has n.

We can test this in our program, e.g., we can generate
the array once, in our setup, and then draw from those
points on the top border (with the array values being
the x coordinate) to the mouse.

First the setup just calls makeArray and stores the
result in a global array:

Then, the draw uses a for loop to go through each bin, and draw a line from
(points[i], 0) to the mouse:

type[] someFunction(type[] someVariable) {…

int[] makeArray(int n)

int[] makeArray(int n)
{
 int arr = new int[n];
 for (int i = 0; i < arr.length; i++)
 {
 arr[i] = i+1;
 }
 return arr;
}

void setup()
{
 size(500, 500);
 points = makeArray(width);
}

Page 337 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Similarly, we can send arrays into functions as parameters. Let’s modify the above
code by making a function that takes an array of x values, and draws points from
those x values, at the y origin, to the mouse. Move the code out of the draw block.
The function header is as normal – just make the variable to be an array type:

Now like any function, this is a reusable piece of code. You can toss in any array
variable, and it will use that data to draw the lines, since the code only works on the
parameter local variable, and not the global.

 Arrays, Functions, and Memory
Although the above example was straight forward, things get tricky very quickly
because array variables only store the memory address, not the whole array.
Consider this example:

for (int i = 0; i < points.length; i++)
{
 line(points[i], 0, mouseX, mouseY);
}

void drawLines(int[] xValues)
{
 for (int i = 0; i < xValues.length; i++)
 {
 line(xValues[i], 0, mouseX, mouseY);
 }
}

int[] numbers = new int[1];
void setup()
{
 numbers = makeArr(10);
 numbers[9]++;
}
int[] makeArr(int n) {
 int [] data = new int[n];
 for (int i = 0; i < data.length; i++) {
 data[i] = i+1;
 }
 return data;
}

Page 338 of 412 jimyoung.ca/learnToProgram © James Young, 2016

What happens? Is this okay? We start by making the array with only one bin in it.
Yet, later, we are accessing the 10th bin (bin 9).

Actually, this works. What is going on?

The trick is to realize that the array variable only holds the memory address, and,
this can change. We can peek at this (just for learning purposes) by asking
Processing to toss out the memory addresses.

Modify your setup block as follows:

If you run it now, even though the memory addresses themselves don’t make any
sense, you can see that they are different. The address changed after the call to the
makeArr function.

Let’s think about that visually.

First, when the program starts, we make
a new array of size 1, and it gets filled
with the default values. The variable
numbers only holds this address.

Later, we call the makeArr function with
the number 10 as a parameter. First, it
makes a new array in memory of size 10
and fills it with 0s.

Then it fills this array with data, from 1 to 10:

void setup()
{
 println(""+numbers);
 numbers = makeArr(10);
 println(""+numbers);
 numbers[9]++;
}

int[] numbers = new int[1];

int [] data = new int[n];

1GB RAM!

(modern looking computer)

int[1] {0}

int[10] {0,0…,0}

Page 339 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Finally, the function returns the data
array. However, in this case, it
actually only returns the memory
address of the array, since that is
what is stored in the variable.

And then it stores that address in our
numbers variable. Previously,
numbers pointed at the int[1] as
in the diagram on the previous page.
However, now numbers points at the new array. Unfortunately, no one is pointing at
the old array and it is lost forever!

Now, since numbers points to an array of size 10, the code for accessing bin 9 works.

Remember: Array variables only store the memory addresses!

This quirk of arrays makes things quite complicated when dealing with functions.

 Example: generating Fibonacci numbers
Let’s make a function that takes an integer, n, and returns an array. It does the
following:

 Makes a new array of size n
 Fills the array with the first n Fibonacci numbers
 Returns the new array

As a reminder, the Fibonacci number sequence is defined as:

F0 = 0

F1 = 1

Fn = Fn-1 + Fn-2

For example, the first 6 numbers are 0, 1, 1, 2, 3, 5 … First, we setup the function
header. It simply takes an integer, n, and returns the new array:

for (int i = 0; i < data.length; i++)
{
data[i] = i+1;

}

numbers = makeArr(10);

1GB RAM!

(modern looking computer)

int[1] {0}

int[10] {1,2,…,10}

Page 340 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Then, we need to use a for loop to calculate the numbers. First, however, we need
to setup the initial conditions, the F0 and F1.

Warning: there is a danger here. What if we only want the first number only? If n is
1? Then the second line will crash. We can use if statements to make this safe:

Now that we setup the first 2, we can generate from the third one on using a for
loop. At each bin, simply look at earlier bins to calculate the new number, as in the
formula on the prior page:

And we’re done! Return the array. Remember that we are supposed to make a new
array here, so this instantiates the array. Wherever you use this, you just need to
declare the array variable, and do not need to instantiate it elsewhere.

Let’s use this function to visualize what this
sequence looks like: draw circles with radius set to
the Fibonacci numbers. Since this is not interactive,
let’s do everything in the setup and forget the
draw. After setting the screen size and clearing, we
first create the array into a local variable (I used a
global to set the number of Fibonacci numbers):

NOTE: Wait a second – why am I just creating the
array variable, fib, but not instantiating the array?
We always need to instantiate the array! The

int[] fibonacci(int n)

f[0] = 0;
f[1] = 1;

if (n>=1)
 f[0] = 0;
if (n>=2)
 f[1] = 1;

for (int i = 2; i < n; i++)
{
 f[i] = f[i-1] + f[i-2];
}

int[] fib = fibonacci(COUNT);

Page 341 of 412 jimyoung.ca/learnToProgram © James Young, 2016

answer is that the array is instantiated inside the fibonacci function. It calls new
to create the array, and returns the address to store in the fib variable.

Then, we just run a for loop over the numbers, and draw circles at the center of the
screen with the radius equal to the Fibonacci number:

 Modifying an Array in a Function
First, consider this example without arrays, that changes a regular variable value in
a function

What is the output here? The output is

In setup, i is set to 15. printInflation is called, and 15 is copied in and stored
inside the local variable number. Inside printInflation, 1 is added to number,
which becomes 16, so 16 is printed out. Once the function returns to the setup
block, no data was returned. Since only a copy of i was passed into the function,
the original i stays unchanged at 15. So, 15 is printed out second.

By now this should be clear to you. However, let’s do something similar with arrays:

for (int i = fib.length-1; i >=0; i--)
{
 fill(255);//random(255));
 ellipse(width/2, height/2, fib[i]*2, fib[i]*2);
}

void setup()
{
 int i = 15;
 printInflation(i);
 println(i);
}
void printInflation(int number)
{
 number += 1;
 println(number);
}

16
15

Page 342 of 412 jimyoung.ca/learnToProgram © James Young, 2016

What is the output? If you run the above code, you get 2 and 2.

Wait a second – why is this? This example looks just like the previous one – we
change something inside a function, but, it gets changed back in the original, too!
What happened?

This comes back to the fact that array variables only store the address of the array
and not the whole array. When we call printInflationArry, we pass the
address along to the original array. The address gets copied, the array does not
get copied. There is only one array.

So when printInflationArry gets a copy of the address, and it modifies the
array, it modifies the original. It prints out the modified bin, and after it returns, the
setup block also prints out the same bin, since they are working on the same array.

As you can see, there is only ever one array created. Initially, i gets set to the
address of this new array. When printInflationArry is called with i, this
address gets copied in. Inside the function, the intarray variable points to the

void setup()
{
 int i[] = {1, 2, 3};
 printInflationArry(i);
 println(i[0]);
}
void printInflationArry(int[] intarray)
{
 intarray[0] += 1
 println(intarray[0]);
}

void setup()
{
 int i[] = {1, 2, 3};
 printInflationArry(i);
 println(i[0]);
}
void printInflationArry(int[] intarray)
{
 intarray[0] += 1
 println(intarray[0]);
}

1GB
RAM!

int[] {1,2,3}

Page 343 of 412 jimyoung.ca/learnToProgram © James Young, 2016

same array as we used in the setup block. When the code modifies the array
pointed to by that address, the single array changes. The array pointed to by i back
in setup changes.

This actually works exactly the same as before. We copy the memory address in.
The function cannot change what is in the variable i. However, since it has the
address to the array, it can change that.

Here is a similar example. What is the output from the code below?

The output is actually

Why does this happen? This seems to contradict the previous example, where
changes made to an array in a function, reflect back in the calling function. Again,
remembering that array variables only store the memory address helps solve this
mystery.

What is happening is that, even though we pass the address of int[] i from setup
into makeNewArray (which is then copied into intarray), the makeNewArray
function immediately throws away that memory address, and gets a new one: it calls
new int[3], which makes a new array, and stores that new memory address in
intarray. We modify that new array. Back in setup, the i variable still points to
the old array. The new memory address we got in makeNewArray stayed there, and
it had no way to get back. Let’s look at this visually:

void setup() {
 int i[] = {1, 2, 3};
 makeNewArray(i);
 println(i[0]);
}
void makeNewArray(int[] intarray) {
 intarray = new int[3];
 intarray[0] = 5;
 println(intarray[0]);
}

5
1

Page 344 of 412 jimyoung.ca/learnToProgram © James Young, 2016

In setup the new array is made in
memory as usual, and the address is
stored in i. When makeNewArray is
called, this address is copied in.

Inside makeNewArray, initially intarray points to our single array in memory.
Immediately following, we call new to create a new array in memory, so now
intarray points to the new array. We modify the new array in place (set the first
bin to 5), and print out that bin in the new array. Notice how i in setup still points to
the original, unchanged array, so when we return to setup, we print the bin from the
original array. The address from the new array is lost, and we can no longer access
it once the function is over.

 Example: moving a point field around
Let’s do an example which highlights many of the points of tossing arrays around
with functions. We will create an array in a function, modify an array in a function,
and send multiple arrays to a function.

This program will draw a collection of random points around the screen. Using the
keyboard you can move the whole lot around (like moving a piece of paper). Clicking
the mouse gives a new set of random points.

First, create globals to store your x and y points. For now, let’s just create the array
variables, we will instantiate them later:

To create these arrays and populate them with data, we need a function that will

void setup() {
 int i[] = {1, 2, 3};
 makeNewArray(i);
 println(i[0]);
}

void makeNewArray(int[] intarray) {
 intarray = new int[3];
 intarray[0] = 5;
 println(intarray[0]);
}

int[] pointsX;
int[] pointsY;

1GB
RAM!

(modern looking computer)

int[] {1,2,3}

int[] {0,0,0}

Page 345 of 412 jimyoung.ca/learnToProgram © James Young, 2016

create an array and fill it with random values within a specific range. In this case,
let’s make a function that takes the array size, and the maximum value, and returns
such an array. Then, we can use it to generate both the x and the y values.

Keep in mind that this function does not modify any global variables. It creates a new
array, populates it with values, and returns the address to this new array. Hmm...
Why does it add +1 to the max value? Now, in our setup block, we can call this
function to generate our random x and y points:

This is important: here, we only create the variable at the beginning of the program.
The arrays are created (instantiated) inside the newRandomArray function. It
returns a memory address pointing to a new, random array, that we store in our
global variables. From that point forward, those globals point to the random arrays.

Next, make a function that takes two integer arrays (one for x, one for y), and draws
the points on the screen. This should be straight forward, but keep in mind that the
memory address is copied in. No matter where the arrays were created, as long as
this function receives memory addresses to two arrays, it is happy.

int[] newRandomArray(int n, int max)
{
 int[] a = new int[n];
 for (int i = 0; i < a.length; i++)
 {
 a[i] = (int)(random(max+1));
 }
 return a;
}

void setup()
{
 size(500, 500);
 pointsX = newRandomArray(COUNT, width);
 pointsY = newRandomArray(COUNT, height);
}

void drawPoints(int[] x, int[] y)
{
 stroke(255);
 for (int i = 0; i<x.length; i++)
 point(x[i], y[i]);

Page 346 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Next, let’s make a function that modifies an array. It takes an array, and an integer,
and adds the number to each bin. Since only a memory address comes in, whatever
changes are applied to the array inside this function, are permanent, and will be
reflected back in the array that was used to call the function. This is the case even
though this function returns void. The function can modify the array since it
knows the address to it.

Finally, let’s work up the draw block. The basics are easy: clear the background, and
draw the points using drawPoints. We need some additional (slightly tedious) logic
to check which key or mouse is pressed. Depending on the key, we either add 1 or
-1 to pointsX (to move right or left), or similarly 1 or -1 to pointsY (to move down
or up). The thing to remember here is that, although those addToArray calls do not
have a return value, since we are passing the array address, we can expect that the
array is modified inside the function. This contradicts what is possible with regular
variables.

To make this happen, we will introduce a new technique: how to tell which key was
pressed. You may have encountered this already, for example, in an assignment or
reading on your own.

While we know that we can use keyPressed to tell if a key is currently down on the
keyboard, how do we know which key was pressed? Luckily, Processing provides
global variables that contain the last keys pressed. You can read more about this on
the Processing website, but some keys are coded and do not provide characters,
such as the arrow keys, the enter key, etc. We can check the code of the last key
pressed using the keyCode global. Further, Processing provides some constants
that know the codes of typical keys. With this in mind, the following code should
make sense to you:

}

void addToArray(int[] data, int value)
{
 for (int i = 0; i < data.length; i++)
 data[i] += value;
}

void draw()
{
 background(0);
 if (keyPressed)
 {

Page 347 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Finally, it is worth discussing what happens with the mouse is pressed. When the
newRandomArray function is called twice, it generates brand new arrays with new
memory addresses. Those addresses are returned, and stored in pointsX and
pointsY. The old addresses are lost forever (and the old arrays abandoned).
Anywhere in the program that uses pointsX and pointsY from this point will be
using the new arrays.

 Check Your Understanding: Exercises

 Make a function that takes an integer array, and returns a single
integer. The function will add up all the values in the array, and return the total.

 Make a function that takes two integer arrays in as parameters and
returns void. If the arrays are the same size, then swap every second element
between the arrays. For example, given {1, 2, 3, 4} and {10, 11, 12, 13}, you
should end up with {1, 11, 3, 14} and {10, 2, 12, 4}

 Make a function that takes in an array of floating point numbers as a

 if (keyCode == UP)
 addToArray(pointsY, -1);
 else if (keyCode == DOWN)
 addToArray(pointsY, 1);
 else if (keyCode == RIGHT)
 addToArray(pointsX, 1);
 else if (keyCode == LEFT)
 addToArray(pointsX, -1);
 }
 if (mousePressed)
 {
 pointsX = newRandomArray(COUNT, width);
 pointsY = newRandomArray(COUNT, height);
 }
 drawPoints(pointsX, pointsY);
}

Check your Understanding

CuSn

CuSn

CuSn

Page 348 of 412 jimyoung.ca/learnToProgram © James Young, 2016

parameter. It creates a new array of the same size, and copies the data from the
input array into this new array, except in reverse order. The new array is returned.

a. Make a new function that takes two floating point arrays as parameters
and returns true if they hold the same data (in the same order), and
false otherwise.

b. Use your two functions to determine if a set of ordered numbers is a
numerical palindrome, that is, the same forwards and backwards.

 Make a function called subset that takes two arrays of integers, a
and b. The function returns true if, for every item in a, it is found in b. Conversely,
if there exists an element in a that does not exist in b, return false.

 A big swarm of flies (did someone leave some
banana peels in the garbage over the weekend??) You will
make a bunch of points start at the screen center, and then
move randomly. It looks like a (gross) swarm of flies.

The point of this lab is to use arrays with functions. As such,
do not use any globals – finals or otherwise – in your
three functions you will make. All data will be either
passed into or out from the functions.

Make the following globals. final int FLIES determines how many flies are
in the program. Try 500 to start. final int MAX_MOVE determines how much
the flies move. I use 5. Make two integer array variables, pointsX, pointsY;
just make the variables, do not instantiate or create the arrays. Make the following
three functions:

int[] newArray(int size, int value). Takes a size, makes a new array
of that size, and sets every bin to value (use a for loop). Return the new array.

void drawPoints(int[] x, int[] y, int clr). Assuming x and y are
the same length, sets the draw color to clr, and draws all the points x[i], y[i].

void changeArray(int[] a, int maxChange). Goes through each bin in
a, calculates a random change from –maxChange to maxChange, and applies it
to that bin. Each bin should get a new random number applied.

In setup, set the canvas size, and call newArray twice to set your pointsX and
pointsY to the screen center. Save in your global arrays.

In draw, clear the background, call changeArray twice (once on pointsX and
once on pointsY), and call drawPoints once. Should work! Grab some
chopsticks and catch those flies!

CuSn

CuSn

Page 349 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 You will plot the sine function, after
tossing it into an array. Sometimes, to save memory
or time, we use coarser approximations. In this lab,
you will also learn how to approximate the function
with a half or quarter the number of points.

You will only need globals for the number of points
(set to 200), the ellipse size (I used 5), and the
colors. You will need the following four functions.

float[] sinArray(float min, float max,
int steps) – Creates a new array with steps bins, and fills it with the sine
function from min to max. After making the new array, use a for loop to go
through each bin. At each bin, calculate the angle (to use in sin) as
bin/(bincount -1)*(max-min) + min. (make percentage from 0..1,
multiply by the range, and add the minimum). Then use this angle in the sin
function, and store the result in your array at the appropriate bin.

float[] halfArray(float[] array) – Creates a new array that is half
the size of the one provided, with the data approximated. It samples the original
array into the new one. Since the new array has half the bins, we take the pairs
of bins in the old array and average them for our value. That is, for
0<=i<newarray.length we set newArray[i] to be the average of
oldArray[i*2] and oldArray[i*2+1]. Make sure to return the new array!

float[] quarterArray(float[] array) – Creates a new array that is a
quarter of the one provided. We can do this simply by calling halfArray twice!

void plotSine(float[] data, int clr) – Plots the data on the screen.
This one is annoying, but it is ok once you figure it out. First, make a for loop
to go through each bin in data. You figure out x by taking the percent along the
array (i/(length-1)), and multiplying it by the screen width. For y, since we
know that sine goes from -1..1, and we want it centered, we take the data[i]
*height/2, and add it to the center of the y axis. Draw the ellipse.

setup just sets the canvas size. draw loop, each time, should have the min at
0, set the max to be mouseX/width*8PI, create a new sinArray into a local
variable, if the mouse is pressed half that array using halfArray, if a key is
pressed quarter that array. Plot it regardless. The data is not saved (so lost) at
the end of the draw function.

 Images! You will load two images – a full color one, and a
corresponding black and white one. If the user pressed the mouse button, it will
draw color on the black and white canvas.

Ag

Au

Page 350 of 412 jimyoung.ca/learnToProgram © James Young, 2016

There is a bunch of new stuff in this one.
We will be using a new Object type called
PImage (short for Processing Image). It
can load images that are a part of your
project. You can use your own images, but
I provided two for you that I know work, so
maybe start there. Check them on the
website under Unit 18. You can add the
images to your sketch by using
Processing. Click “Sketch” menu, then
“add file”, and add the images, one by one, to your project. To see what files
are already added, click “Show Sketch Folder” to see.

Once you create a PImage variable,

Then you can use the following functions and methods that are built in:

PImage loadImage(String name); This loads the given file and returns a
PImage, e.g., img = loadImage(“photo.jpg”);.

void img.loadPixels(); This converts the internal image format to an array
that you can access

void img.updatePixels(); This updates the internal image based on the
image array.

You also have the following variables accessible through the image object:

int[] img.pixels; This is an integer array representing the pixels. Useless
until you call loadPixels. If you change this array, call updatePixels to
make the image updated.

int img.width;
int img.height;

At the beginning of your program, create two PImage variables (PImage img,
and PImage bwImage; for the color and black and white ones). Also, create
two strings for the file names. I have BW_IMG_NAME = "photobw.jpg" and
IMG_NAME = "photo.jpg" (the ones provided for download). These must
refer to an image in your project.

So now we can load images, and, get integer arrays of their pixels. There is a
gotcha – images are two-dimensional, yet we only get a one dimensional array.
This is standard for images, and the pixels are ordered in a fixed order: the top

PImage img;

Page 351 of 412 jimyoung.ca/learnToProgram © James Young, 2016

left corner is index 0 of the
array, and they increase as
you move right. So, the first
row is index 0..width-1.
They just continue on the next
line, from
width..2*width-1. So,
given an x and a y, the index
into the array is x + y*width
(see inset).

In your setup, call
loadImage twice to get the
two images and store the
result in your global variables.
Also, call loadPixels on
both since we will be working
with the pixel array.

Set the canvasSize to (img.width, img.height). It doesn’t matter which of
the two images you use since they should be the same size.

In this example, we have two images, and, we will copy parts from one image to
another (from the color one to the b&w one). To do this, all we need to do is to
copy array data from one array to the other.

Make the following functions:

int pixelIndex(int x, int y, int w). Converts x,y for width to a one
dimensional array index.

float dist(int x, int y, int x2, int y2). Returns Euclidean
distance between two points

void drawAtMouse(int[] toImg, int[] fromImg). This function copies
all pixels from fromImg to toImg that are within a specified distance to the
mouse. I used BRUSH_SIZE = 10. To do this, you setup a nested for loop to
go through all x,y of the fromImage. (both images should be the same size).
You calculate the distance between each x,y and the mouseX, mouseY. If it is
less than your brush size, you call pixelIndex to get the index of this x,y,
and copy this bin from fromImg to toImg. That’s it! Make sure to use a nested
for loop over the screen dimensions, as it makes it easier.

In draw, if the mouse left button is pressed (make sure to check if a button is
pressed AND it’s the left one), then call drawAtMouse with the two images. If
the right mouse button is pressed, re-load the b&w image and make sure to

 X 0 1 2 … w-1

y 0 0 1 2 … w-1

 1 w w+1 w+2 … 2w-1

 2 2w 2w+1 2w+2 … 3w-1

 … … … … … …

 … yw … … yw+x …

 h-1 wh-1

How pixels are numbered in an image, where w is the width
and h is the height: numbering starts at the top left of the image
and goes right, and continues on the next line. The pixel
number can be calculated by yw+x, and given a pixel
number n, x=n%w and y=n/w

Page 352 of 412 jimyoung.ca/learnToProgram © James Young, 2016

call .loadPixels again (lets you start over). At the end of the draw block,
call .updatePixels() on your black and white image to reflect any changes
you may have made. Finally, you can draw the image with the background
command – yep! You can do background(bwImage); and it draws the image,
as long as the image is the same size as the canvas.

 You will implement a simplified base for the dice game Yahtzee™.
For those familiar with the game:

 Only the top half of the score sheet will be used.
 It is for only one player.
 Only a simplified strategy will be allowed: The player must choose to keep all

dice of one particular value, and re-roll the rest.

This will be implemented in steps.

 Step a) will only allow 5 dice to be rolled.
 Step b) will allow re-rolling of some of the dice.
 Step c) will keep score, and complete a simplified game.

The game is played by rolling 5 dice. The dice roll will be stored in an integer array
containing 5 integer values from 1 to 6. We will leave most of the drawing the dice
to screen and completing the user input to your own time. Here, we focus on the
logic and array problems to be solved. Make sure to write good code in the draw
block to test your functions.

a. Create the following functions:

int[] rollDice(int numDice) create and return a reference to a dice roll
– an array containing numDice integers from 1 to NUM_SIDES.

void showDiceRoll(int[]) draw the dice. For now, just draw to console,
you can add graphics later.

b. The player is now allowed to make two additional rolls. The objective is to get as
many as possible that are showing the same number. In the real game, the
player can choose to keep any subset of the dice. In this version, the player can
only choose one “goal” number. All dice showing that number will be left alone,
and the rest will be re-rolled.

Once this has been done twice, the player must add up their score, the sum of
those dice showing the particular number from 1 to 6. For example, if the dice
are showing 5-3-2-3-3 and the player chooses 3, the score will be 9 (add up the
3’s only – the 5 and 2 are ignored). If the player chooses 2, the score will be 2.
If the player chooses 1, the score will be 0.

Create the following two small functions:

Ag

CuSn

Page 353 of 412 jimyoung.ca/learnToProgram © James Young, 2016

void tryFor(int target, int[] dice) accept a dice roll and a target
number. Dice that are equal to the target should be left unchanged. All the rest
should be re-rolled.

int scoreAs(int number, int[] dice) calculate the score for the given
roll, if the player chooses the given number. All dice showing that number are
added up, and all others are ignored.

c. To play the complete (still simplified) game, the player is given 6 turns. When a

player chooses to score a particular number, for example 3’s, the score will be
entered beside “3’s” on the scoresheet. Once a number is chosen, it cannot be
chosen again. Each number must be used exactly once. A total score is
calculated. If that total score is 63 or more, a bonus of 35 points is added to the
score (once only).

A score sheet will be represented by an int[] array containing 8 values. The
first six will be the scores for 1’s to 6’s. A value of EMPTY (predefined as -1) will
indicate that the row is empty (has not yet been chosen). The last two rows will
be for the Bonus score and the Total score. Use named constants
SCORE_SHEET_SIZE, BONUS_ROW, and TOTAL_ROW to represent the number
of rows in the score sheet (8), the index of the Bonus entry (6), and the index of
the Total entry (7).

Create the two following small functions:

void int[] newScoreSheet()create a new blank score sheet. The entries
for 1’s-6’s should be EMPTY (-1), and the entries for the bonus and total should
be 0.

boolean enterScore(int[] scoreSheet, int row, int score) add
another turn to the score sheet. row must be 0 to 5, score is the score for the
turn. If row is currently empty, then return true, and update the score sheet
properly (including adding the bonus if earned), otherwise return false and do
nothing else.

d. Drawing graphics is quite time consuming and can be tedious. Also, we did not
really cover advanced user input in this course. As such, moving from the
above functions into an actual working game is not trivial. Here we have
provided some code that gives these features, and interfaces with your existing
code that you wrote on this question. Try to get it working, and, ask your
instructor about any of the advanced techniques used. The code can be found
on the course website, called DiceGame.pde.

Au

Au

Page 354 of 412 jimyoung.ca/learnToProgram © James Young, 2016

e. For most of the scoring in the full game, it is necessary to know the number of

times that each number (1 to 6) appears on the dice, and what the maximum
number of times is (“3 of a kind”, “4 of a kind”, etc.).

The game also needs to know how long a “straight” you have. A straight is a
series of consecutive numbers such as 1-2-3-4 or 2-3-4-5-6, in any order (4-5-
3-6-2 is a straight, too). It also needs to know if you have a “full house” which
is exactly 3 of one number, and 2 of another, such as 2-2-3-3-3 or 4-1-4-1-4.

Start with the file on the course website, DiceGame2.pde, which contains
updated logic to use the following functions:

int[] freqCount(int[] dice) accept an array representing the numbers
on the dice (an array of NUM_DICE values, each from 1 to NUM_SIDES). Create
and return an array of NUM_SIDES elements indicating how many times each
number from 1 to NUM_SIDES appeared. That is, count the frequencies of the
dice sides. Note that since the indices of an array always start at 0, but dice
values start at 1, the number of 4’s would be at index [3].

int maxOfAKind(int[] freqs) accepts an array of integers, and returns
the biggest one. In terms of the game, if you give it the frequency count result
from freqCount, it will tell you how many “of a kind” you have.

int maxInARow(int[] freqs) accepts an array of integers, and return the
maximum number of consecutive non-zero values that it could find in the array.
In terms of the game, if you give it the frequency count from freqCount, it will
tell you how long a “straight” you have.

boolean hasFullHouse(int[] freqs) accepts an array of integers and
determine whether or not one of them is a 3, and another one is a 2. In terms
of the game, if you give it the frequency count from freqCount, it will tell you
whether or not you have a full house.

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

Au

