
 

Page 37 of 412  © James Young, 2015 

 VARIABLES AND INTEGERS 

Summary 
In this section, you will… 

 Learn how computers can store small bits of information as variables. 
 Make your own variables, store information in them, and get information out. 
 Get and install the Processing program which enables you to write Processing 

computer programs. 
 Learn the details of syntax surrounding variables. 
 Learn about integers. 
 See how computers do the basic integer operations of addition, subtraction, 

multiplication, and division – and see the issues with integer division. 
 See how computers use the remainder operation (modulo) with integer division. 
 Learn about basic debugging by printing out the contents of variables 

Learning Objectives 
After finishing this unit, you will be able to write basic Processing programs that use 
simple integer variables. You will be able to: 

 Create a new integer variable and give it a unique name. 
 Store information into a variable (e.g., the number 10). 
 Get information out of a variable. 
 Create a variable and give it an initial value in one line of code. 
 Create multiple variables in one line of code. 
 Add, subtract, multiply, and divide integers. 
 Get the remainder when dividing two integers. 
 Apply order of operations to figure out the result of a calculation. 
 Use the built-in println command to look inside variables for investigating your 

errors. 

How to Proceed 
 Read the unit content. 
 Have a Processing window open while you read, to follow along with the 

examples. 
 Do the sets of exercises in the Check your Understanding sections. 
 Re-check the Learning Objectives once done. 

 

  



 

Page 38 of 412  © James Young, 2015 

 Introduction 
What is a variable? We use them all the time in algebra – there, we use a letter or a 
Greek symbol to represent some number. Some common variables in math are x, y, 
k, and l. Variables are similar in programming, although we use them less for 
algebra and proofs (yay!). Basically, it is a way to store information. Computers use 
this all the time. For example, when you log into a website, the website stores your 
name and personal information in variables, and then uses that information in its 
processing.  

Hi [name], welcome to our site! We see that you come from [city]. 
People in [city] previously bought the following items from us… 

Variables help the programmer write the template and the general case, and fill in 
the blanks later. 

Look at the following program: 

/******************* 
* Cat Face! Draw a cat face on the screen 
* author: Teo the dog 
* version: try #awesome 
* purpose: to show how a cat can be drawn 
********************/ 
 
size(500,500); // make a 500x500 canvas 
 
//draw the head 
ellipse(250,250,300,300); 
 
//draw the ears 
triangle(375,80,300,150,400,200); 
triangle(125,80,200,150,100,200); 
 
//draw the eyes 
ellipse(175,225,60,30); // left eye 
ellipse(175,225,15,30); 
ellipse(325,225,60,30); // right eye 
ellipse(325,225,15,30); 
 
//whiskers! 
line(250,300,200,275); 
line(250,300,300,275);



 

Page 39 of 412  © James Young, 2015 

line(250,300,190,300); 
line(250,300,310,300); 
line(250,300,200,325); 
line(250,300,300,325); 
 
// draw the nose. draw after whiskers for nice overlap effect
ellipse(250,300,30,30); 

 

Here is our cat program again. Now, what if I wanted to move the whiskers and nose 
to be a little higher? Let’s try 100 pixels higher. To do this 
we need to change all the y coordinates of the whiskers 
and nose – a real pain in the donkey. Go and do it and 
press play. You will find that my approximation was off – 
100 pixels is way too high and now the cat has a nose on 
the forehead. So we need to go back and manually do it 
again, trying a new y offset and changing all those values 
before seeing the result. Wouldn’t it be nice if there was 
a better way?? Well, variables help solve this problem. 
Remember in algebra we can do things like this: 

x = 25  // store the # 25 in x 
y = 2x  // grab value from x (25), multiply it by 2 (=50), 

store in y 
z = 4x + 7 // grab value from x (25), multiply by 4 (=100), 

add 7 (=107), store result in z 

y and z are defined relative to x. If instead x was 30, then y and z are calculated 
differently, too. It would be nice if we could rewrite our program in a similar way: 

 noseCenterY = 200 

 draw straight-out whisker at noseCenterY 

 … (do this for all the drawing commands) 

Then, if we want to move the nose, we just change the value stored in our variable, 
and everything is fixed! All of these are called variables because what is stored in 
them can change all the time. 

 Variables as Boxes 
You can think of variables as boxes that store information. Imagine you are 
organizing your office or basement (see the picture). Now, in this imaginary scenario, 
you are very strict on how you must organize things, so you collect a bunch of boxes 



 

Page 40 of 412  © James Young, 2015 

and label them 
with what goes 
in them. These 
labels may be 
things like 
books, research 
papers, and 
toys. AND, you 
will be VERY 
upset if someone mixes things around. No 
toys in the book box. If this was processing, 
those boxes are variables, and just like in 
our scenario, processing is very strict about 
what goes in each box. When you create a 

variable (create a box), you need to tell processing about what kind of data you are 
going to put into it, for example, a number, or some text, or some music! These are 
called data types. 

 Your First Data Type: the Integer 
What is an integer? (high school math!!). If you remember, it is simply a whole 
number with no fractional part. The following are integers: 0, 42, -99, and 200. The 
following are not integers: 3.14, 99.1. 

What is the biggest integer? Theoretically, there is none. However, the larger your 
integer is, the more memory a computer needs to store it, so unfortunately, we 
cannot have infinitely large integers in Processing since computers do not have 
infinite memory. In fact, in Processing integers have 
a pre-defined limit on the range of numbers that can 
be stored in it 

 the range -2,147,483,648…2,147,483,647 

That is over a 4 billion number range. Clearly, these 
exact numbers were chosen for obvious reasons. 
That was sarcasm. Don’t bother memorizing these 
numbers, just have a general sense – about minus 2 
billion to about 2 billion. 

If you need larger or smaller numbers, there are 
options, but we’ll talk about them later. 

WHAT?? NO FRACTIONS OR DECIMALS?? 

That’s right – computers are way faster with whole numbers, so we generally resort 
to those. There are also problems when fractions and whole numbers mix which 

toys papers books 

And no exceptions! NEVER 
put a research paper in a 
toy box 

It’ so obvious! Processing uses 32 
bits, which has 232 possibilities = 
4,294,967,296. If you divide that 
into positive and negative, divide 
by two, you get 2,147,483,648. 
The positive range looks to be one 
less since 0 is included as a non-
negative number. Clearly. 



 

Page 41 of 412  © James Young, 2015 

comes up in a later unit. We’ll learn about what to do when we need decimals later. 

 Variables in Processing: Syntax 
To work with variables in processing, we need to solve three problems: 

 how to create a variable 
 how to put data into a variable 
 how to get data back out of a variable 

 

here is the syntax to create a variable in Processing: 

So far, we only know one type, the integer. In Processing, this is converted to the 
shorthand int. So, to create an integer variable called noseCenterX to store the 
x coordinate of the cat’s nose: 

don’t forget the semi colon! 

NOTE: Variables must be created (declared) before you use them. (remember 
that the program runs top to bottom). To avoid this mistake altogether, generally, we 
put these at the top of our program. 

The next problem is how to put data into the variable. The syntax for this is: 

So in our example, since the cat’s nose is centered at the x coordinate of 250: 

Note: the hand-written data like an actual number, or some text, is called 
“literals” in programming speak.  

So now we can create variables, and we can store data into them, how do we look 
at them? This is very simple. You just use the variable name anywhere you can use 
raw data. For example, we can now rewrite the following command: 

variableType variableName; 

int noseCenterX; 

variableName = data; 

noseCenterX = 250; 

// draw the nose. draw after whiskers for nice overlap effect
ellipse(250,200,30,30); 



 

Page 42 of 412  © James Young, 2015 

as 

 

Let’s also add a variable for noseCenterY, and update all of the drawing to use our 
new variables. You end up with the following code: 

/******************* 
* Cat Face! Draw a cat face on the screen 
* author: Teo the dog 
* version: try #awesome 
* purpose: to show how a cat can be drawn 
********************/ 
int noseCenterX; 
noseCenterX = 250; 
int noseCenterY; 
noseCenterY = 300; 
 
size(500,500); // make a 500x500 canvas 
 
//draw the head 
ellipse(250,250,300,300); 
 
//draw the ears 
triangle(375,80,300,150,400,200); 
triangle(125,80,200,150,100,200); 
 
//draw the eyes 
ellipse(175,225,60,30); // left eye 
ellipse(175,225,15,30); 
ellipse(325,225,60,30); // right eye 
ellipse(325,225,15,30); 
 
//whiskers! 
line(noseCenterX,noseCenterY,200,275); 
line(noseCenterX,noseCenterY,300,275); 
line(noseCenterX,noseCenterY,190,300); 
line(noseCenterX,noseCenterY,310,300);

// draw the nose. draw after whiskers for nice overlap effect
ellipse(noseCenterX,200,30,30); 



 

Page 43 of 412  © James Young, 2015 

line(noseCenterX,noseCenterY,200,325); 
line(noseCenterX,noseCenterY,300,325); 
 
// draw the nose. draw after whiskers for nice overlap effect
ellipse(noseCenterX,noseCenterY,30,30); 

 

Now, the nose center drawing uses the information in our variable instead of a hard-
coded literal number. If you change the noseCenter variables around, all the nose 
commands move nicely. However, there is a problem here!! The whisker ends do not 
follow along, since we only have the line starting points rely on the variable, and not 
the end points. We’ll have to fix this. However, let’s learn a few more things about 
variables first. 

 Additional Variable Details 
Here is a final list of important points regarding the use of variables. First, when you 
create a variable, you often want to assign it a value right away. Because of this, 
you’ll often see code like the following: 

Programmers like shortcuts, so there is a clever shortcut for this special case, it 
lets you create a variable (declare it) and give it a value (assign to it) in one go: 

With this trick, you can turn two lines of code into one! 

Variables are variable: you can change variables at 
any time!! And remember that the program runs top to 
bottom. Check out the following code 

 

Even though we type the exact same ellipse command twice, the second one has a 
different result because the value of circleSize changed. Let’s quickly step 

int noseCenterX; 
noseCenterX = 250; 

int noseCenterX = 250; 

int circleSize = 50; 
ellipse(100,100,circleSize,circleSize); 
circleSize = 10; 
ellipse(100,100,circleSize,circleSize); 
// same as above 
 



 

Page 44 of 412  © James Young, 2015 

through what happens, going from top to bottom. 

1. A new variable is created called circleSize, and the number 50 is stored in 
there. 

2. An ellipse is drawn at (100,100) of size (circleSize, circleSize). 
Since circleSize currently has the value 50, it is drawn at size (50,50). 

3. The number 10 is stored in circleSize. The old value, 50, is thrown away. 
4. An ellipse is drawn at (100,100) of size (circleSize, circleSize). Even 

though this is the same command as in line 2, the result is different because the 
variable has new data. Now, it is drawn size (10,10). 

Further, once a variable has been declared, then you cannot declare it again. 
Processing gets very confused if you do this! Check out the following code: 

See the difference with the prior example? Toss it into Processing and see what 
happens. When you click run, you unfortunately get an error: Duplicate local 
variable circleSize. You can’t have two variables with the same name. To 
fix this, you need to remove the int in the second circleSize, so that you are not 
trying to create a new one, but instead, just copy a new number to the existing 
variable. This is a very important distinction – in the first (not-working case) we are 
asking processing to make a new variable with the same name. In the second case, 
we are re-using an existing variable and giving it new data (throwing the old data 
away). 

What happens if you create a variable, never put anything into it, but try to use it? 
For example 

If you try to run this, Processing will say: The Local variable circleSize 
may not have been initialized. and it won’t run. This makes sense, since 
what would you expect the circle size to be if you never set a value? Variables must 
be initialized – given a value – before they are used. 

You cannot just name a variable anything, there are rules. However, you have a lot 
of flexibility for variable names. Generally you should try to pick something nice and 
descriptive to help you read your code more clearly. Here are the restrictions: 

int circleSize = 50; 
ellipse(100,100,circleSize,circleSize); 
int circleSize = 10; 
ellipse(100,100,circleSize,circleSize); // same as above 

size(500,500); 
int circleSize; 
ellipse(100,100,circleSize,circleSize); 



 

Page 45 of 412  © James Young, 2015 

 No spaces! You cannot do: int circle size; as it confuses Processing. 
 No special characters !”#%&’()-=^[]{} – the exception is that underscore is 

allowed: _ (some people use it as space) and $ is allowed, although no one uses 
it since it looks funny (e.g., int a$$e$$e$); 

 Cannot start with a number, but can contain one 
 int 4peace; // cannot do this! 
 int piece4; // this is okay 

Another problem is that some words in Processing already have meaning. These 
are called reserved words. You cannot use these as variable names because 
they are already in use. For example, you cannot make the following variable: 

Processing will say: unexpected token: int. This is because it’s trying to add meaning 
to your variable name and not see it just as a name. Processing also has some of 
its own variables kicking around, and you cannot use those names either. 

You can find whole lists of reserved words and existing variables, but it’s probably 
not worth your bother to memorize them. Instead, just be aware of the problem in 
case you stumble across a strange error when making a new variable. Try a similar 
name and see if the problem goes away, as you may have a conflict. 

If you have a number of variables to declare of the same type, you can actually 
declare multiple variables at once. Here is the syntax: 

for example 

This is equivalent to 

except that it takes less space. 

In addition, you can add in assignments here: 

int int; 

type variable1, variable2, ….; 

int age1, age2, age3; 

int age1; 
int age2; 
int age3; 

int age1 = 17, age2 = 32, age3 = 23; 



 

Page 46 of 412  © James Young, 2015 

 Check your Understanding: Variable Exercises 

 Create four integer variables that represent the edges of the screen: 
left and right give the x coordinate of the left and right edge, and top and 
bottom give the y coordinates of the top and bottom edges.  

a. Create the 4 variables, one per 
line. 

b. Set your canvas to size 500,500 
and give your variables their 
initial values. Hint: the right and 
bottom edges are not at 500. 

c. Use your variables and the line 
command to draw two lines to 
form an X: from the top left to the 
bottom right, and from the top 
right to the bottom left. 

d. Use your variables and the line 
command to draw a box around 
the edge of the screen.  

e. Re-write the above program to 
have all your variables declared 
and instantiated in a single command. 
 

 The rules say that two variables cannot have the same name, but 
why does the following code actually work, with multiple variables given the same 
name? 

int center = 10; 
int radius = 10; 
ellipse(center,center,radius,radius); 
int Center = 20; 
int Radius = 20; 
ellipse(Center,Center,Radius,Radius); 

 
 
 

Check your Understanding 

CuSn

Ag 

Ag 



 

Page 47 of 412  © James Young, 2015 

 Update the cat face example from Section 3.4. Make sure to update 
your drawing commands to use your new variables as you make them. 

a. Add variables for the left eye and right eye (each eye needs two 
variables) to represent their center locations.  

b. Add variables to represent the pupil and eye width and height. 
c. Try moving the eyes around and changing their sizes using these 

variables to make sure you did it correctly. 

 Try to do the following without typing them into Processing, as it will 
immediately tell you the answer. Which of the following variable declaration 
statements are invalid? 

a. int cat; 
b. Int dog; 
c. int mi$$i$$ippi; 
d. int dog1, dog2, dog3; 
e. int 1mi$$i$$ippi, 2mi$$i$$ippi; 
f. int dog, dog; 
g. int MEANING_OF_LIFE = 42; 
h. int WHY?? = 15; 
i. int __SYSTEM_ERR; 
j. int &data_; 
k. int __data__ = -200; 

 

 Integer Operations: addition and subtraction 
Luckily, integer operations is a pretty simple topic. This will help us solve our cat 
whisker problem (above in section 3.4). 

Let’s start by looking at one of the previous examples, the cat picture. We had the 
following code for drawing a cat whisker 

which we improved by adding named variables to it, as follows: 

Although we can nicely define the center of the nose (the starting point of the 
whiskers), the ends of the whiskers are still fixed numbers. If you remember, this 
made the end points of the whiskers stick on the face if we moved the nose. 

If we look at the first case above (without the variable name), we can see that the 
end point of that particular whisker was 50 pixels to the right (250x start, 300x end), 

line(250,300,300,325); 

line(noseCenterX,noseCenterY,300,325); 

Ag 

Au 



 

Page 48 of 412  © James Young, 2015 

and 25 pixels below (300y start, 325y end) the starting point. Once we set the 
starting point as a variable, we can use integer operations to calculate the other ones. 

You can add two numbers together just by putting a 
plus sign between them. For example, you can do 

now whiskerEndX will equal to 50 more than 
noseCenterX. In this case, 300. 

You can use integer operations anywhere. Here, you don’t need a new variable for 
the whiskers, we can just do the addition right inside the command: 

NOTE: see how the command here broke across lines because it didn’t fit on 
one? That is okay in processing. 

To re-cap, we are drawing a line from noseCenterX and Y, to 50 pixels more than 
X and 25 pixels more than Y. In this case, processing looks inside the variables, gets 
the values, adds the literal numbers to that value, and uses the result in our line 
command. There are a lot of steps happening here, but you’ll get used to the idea 
very quickly. 

Now, if you change the noseCenter variables, that whisker will move along with the 
rest of the face, since both end points are calculated based on the whisker values. 

Let’s look at another whisker 

In this case, the whisker ends 50 pixels to the left (250x start, 200x end), and 25 
pixels above (300y start, 275y end) the start point. We cannot do this with addition, 
so we need subtraction. 

Subtraction in Processing is just as simple as addition. Just use the minus sign: -. 
So, we can rewrite this operation as 

If we now update all the whiskers this way, we can move the whole nose around 

int whiskerEndX; 
whiskerEndX = noseCenterX + 50; 

line(noseCenterX, noseCenterY, noseCenterX+50, 
noseCenterY+25); 

line(250,300,200,275); 

line(noseCenterX, noseCenterY, noseCenterX-50, 
noseCenterY-25); 

I could have told you that…



 

Page 49 of 412  © James Young, 2015 

nicely simply by changing the values of the noseCenterX and noseCenterY 
variables. 

If we look at our cat code, we can see another opportunity to use variables. This was 
included as one of the examples above. As a reminder, here are the eyes: 

Notice how the narrow width of the pupil is 15, the height of the pupil is double that, 
which is the same as the height of the eye? Also, the width of the eye is 4 times the 
pupil width. These ratios make the eye look cool, and the pieces just touch nicely. If 
we were to set the pupil width as a variable, we would need multiplication to calculate 
the other sizes. For example, if the pupil width was 15, then the height is double the 
width, and the eye width is four times the pupil width. In our example, we can create 
a new variable and set it to our pupil width. 

and then plop it into our code. 

But now to go further we need multiplication. 

 Integer operations: Multiplication and Division 
Multiplication in processing uses the asterisk – the * symbol (shift-8 on north 
American keyboards). We can use the multiplication operator on our pupilWidth 
variable to calculate the remaining widths and heights: 

//draw the eyes 
ellipse(175,225,60,30); // left eye 
ellipse(175,225,15,30); 
ellipse(325,225,60,30); // right eye 
ellipse(325,225,15,30); 

int pupilWidth = 15; 

//draw the eyes 
ellipse(175,225,60,30); // left eye 
ellipse(175,225,pupilWidth,30); 
ellipse(325,225,60,30); // right eye 
ellipse(325,225,pupilWidth,30); 

//draw the eyes 
ellipse(175,225,pupilWidth*4,pupilWidth*2); // left eye 
ellipse(175,225,pupilWidth,pupilWidth*2); 
ellipse(325,225,pupilWidth*4,pupilWidth*2); // right eye 
ellipse(325,225,pupilWidth,pupilWidth*2); 



 

Page 50 of 412  © James Young, 2015 

As you can see, we just multiply the width by 2 and 4 to get our desired width and 
heights. 

You could imagine that this whole operation could be reversed, and calculated with 
respect to the eye width (the biggest number) instead of the pupil width (the smallest 
number). The eye height is half the eye width. The pupil height is also half the eye 
width. The pupil width is a quarter of the eye width. Do to this, we need division. 

Division in Processing is accomplished with the / operator. You can envision that 
this is the symbol used in fractions, like ½. I won’t belabor the point, but the above 
example can be rewritten using division as follows. 

Pretty straightforward. Unfortunately, division with integers in Java and Processing 
is not so simple, and is actually a problem that adds a whole bunch of confusion. 
Luckily, I’ll get into that in a bit and for now, you can use it in this example. But be 
warned, there are huge caveats. 

Go back to the cat example, and try to add more variables. 

 Add variables for the center of the cats head. headCenterX and headCenterY 
 Update the head ellipse to use it. 
 Update the eye locations to use it. 
 Update the ear locations to use it. 
 Update the nose center to use it. 

Now, if you do all this work, you have a cat head that you can move around the 
canvas JUST by changing the center variables. I strongly recommend you try it 
yourself. Here is my complete solution: 

int eyeWidth = 60; 
ellipse(175,225,eyeWidth,eyeWidth/2); // left eye 
ellipse(175,225,eyeWidth/4,eyeWidth/2); 
ellipse(325,225,eyeWidth,eyeWidth/2); // right eye 
ellipse(325,225,eyeWidth/4,eyeWidth/2); 

/******************* 
* Cat Face! Draw a cat face on the screen 
* author: Teo the dog 
* version: try #awesome 
* purpose: to show how a cat can be drawn 
********************/ 
 
// variables 
int headCenterX = 250;



 

Page 51 of 412  © James Young, 2015 

 

int headCenterY = 250; 
int noseSize = 30; 
int pupilWidth = 15; 
int noseCenterX = headCenterX; 
int noseCenterY = headCenterY+50; 
 
size(500,500); // make a 500x500 canvas 
 
//draw the head 
ellipse(headCenterX,headCenterY,300,300); 
 
//draw the ears 
triangle(headCenterX+125,headCenterY-170,          
           headCenterX+50,headCenterY-100, 
           headCenterX+150,headCenterY-50); 
triangle(headCenterX-125,headCenterY-170, 
          headCenterX-50,headCenterY-100, 
          headCenterX-150,headCenterY-50); 
 
//draw the eyes 
ellipse(headCenterX-75,headCenterY-25, 
          pupilWidth*4,pupilWidth*2); // left eye 
ellipse(headCenterX-75,headCenterY-25, 
          pupilWidth,pupilWidth*2); 
ellipse(headCenterX+75,headCenterY-25, 
          pupilWidth*4,pupilWidth*2); // right eye 
ellipse(headCenterX+75,headCenterY-25, 
          pupilWidth,pupilWidth*2); 
 
//whiskers! 
line(noseCenterX,noseCenterY,noseCenterX-50,noseCenterY-25); 
line(noseCenterX,noseCenterY,noseCenterX+50,noseCenterY-25); 
line(noseCenterX,noseCenterY,noseCenterX-60,noseCenterY); 
line(noseCenterX,noseCenterY,noseCenterX+60,noseCenterY); 
line(noseCenterX,noseCenterY,noseCenterX-50,noseCenterY+25); 
line(noseCenterX,noseCenterY,noseCenterX+50,noseCenterY+25); 
 
// draw the nose. draw after whiskers for nice overlap effect
ellipse(noseCenterX,noseCenterY,noseSize,noseSize); 



 

Page 52 of 412  © James Young, 2015 

 Advanced Integer Division and Modulo 
Try the following example. Make a program that draws a line across the screen, half 
way down. Make the line go some percentage across the screen. Set the percentage 
in a variable, and then calculate how far across to go. The code will look something 
like this 

type this into Processing, with a 500x500 canvas, and you 
get the following output: huh? Where’s the line? It seems 
to have not drawn. Let’s try doing the calculating by hand: 
33/100*500 = 165. If you type 165 into the line code 
(replace the targetX variable with 165), you get the 
second diagram, with a line one third ways across the 
screen. Why did the line show up? Why does it work if we 
calculate it by hand, but not if we ask the computer to do 
it? They should be the same! 

Finally! It’s time for an amazing helper tool! Tada! 
Processing has a way for you to peek at data! Do you 
remember the console at the bottom of the Processing 
window? There is a processing command called print that 
lets you put data to that screen: 

Let’s try it. Modify your above program as follows: 

int percent = 33; 
int targetX = percent/100*500; // /100 to make percent 
line(0,250,targetX,250); 
println(targetX); 

Now, in addition to drawing a line, this program will print the value of the targetX 
variable to the console, enabling you to take a peek at 
what is going on. 

It shows the source of the problem – the println tells us 
that targetX is actually set to 0, not to our expected 165. 
Let’s dig a little deeper, try the following command: 

int percent = 33; 
int targetX = percent/100*500; // /100 to make percent 
line(0,250,targetX,250); 

println(data); // prints out to the console 

print(percent/100); 

This is not how math 
works.. my head hurts… 



 

Page 53 of 412  © James Young, 2015 

Aha! You get 0 again! What did you expect? 0.33? 

This is because we are working with integers, and not real numbers. Integer division 
does not work like you may think! In fact, it works how division worked way back in 
elementary school. Remember long division? If we did 33/100 in long division, what 
do we get? 

 

0 remainder 33! Before we learned how to do decimals in school, we had remainders. 

In computers, Integer division always gives you the answer assuming you want 
the remainder style, not a fraction result. What is 1/2? 0 remainder 1. What is 
11/3? 3 remainder 2. What is 100/26? 3 remainder 22. 

This may seem very strange to you, but as you will see through this course, integer 
division has a lot of very useful applications. We will learn later how to do the decimal 
style with real numbers, as you may naturally expect. In all these cases, the 
remainder is thrown away, and the basic result (0, 3, 3, etc.) are kept. So how do we 
get the remainder? We use the modulo operator. 

Modulo is a very unusual operation that you will learn a lot about in mathematics 
classes. Basically, it gives you the remainder when two numbers are divided. Let’s 
look at one of the above examples, 11/3. Remember, 11/3 is 3 remainder 2. 

To get the remainder, we replace the / symbol with %, the percent sign. 

So if 11/3 is 3 remainder 2, we get the 3 with division, and we get the 2 (remainder) 
with modulo. You should practice this. What is the remainder when you do 10/2? 
5/2? 11/3? We will end up using remainder a lot later. For now, there is very little we 
can do with it that is fun and exciting, so we’ll come back to it. 

println(11/3); // 3 is output 

println(11%3) // the number 2 is output, the remainder 



 

Page 54 of 412  © James Young, 2015 

 Order of Operations 
Processing math operations follow standard order of operations from mathematics. 
What is the result of the following command? 

The answer depends on the order that you do the math. In high school, you learned 
a particular order that math happens – luckily, this follows here. Multiplication (and 
division and remainder) happens first, and then addition and subtraction: 

 3+2*6/3%4 
  3+12/3%4 
  3+4%4 
  3+0 
  3 

If you do the addition first, you get the wrong answer. 

Sometimes, the order of operations can be quite unclear. In this case, you can 
always use brackets to be sure and to enforce what you mean – just like in high 
school math: 

The code inside the brackets happen first. 

 

 Check Your Understanding: Exercises 

 In the following code, what does b equal at the end? 20 or 10? Hint 
– read top to bottom, and data is always copied. There are no links or such 
happening 

println(3+2*6/3%4); 

println( 3+ (2*6/3)%4 ); 

int a; 
int b; 
a = 20; 
b = a; 
a = 10; 

Check your Understanding 

CuSn 



 

Page 55 of 412  © James Young, 2015 

 Create a simple program that calculates the volume of shipping 
containers and determines how many boxes of sand can fit into the container if 
they are emptied in. A common standard size is 12m by 2.6m by 2.9m. 

a. Create variables for the length, width, and height of the shipping 
container. You should assume cm for the unit. 

b. Calculate the volume by multiplying these together and store it in a 
variable. 

c. Create variables for the length, width, and height of the shipping box. 
E.g., a U-Haul moving box is 45cm by 45cm by 41cm. 

d. Calculate the volume of sand in the box and store it in a variable 
e. Calculate how many whole boxes of sand can fit in the container and 

store the result in the container. Use the integer division. 
f. Since we are using integer division there is no fractional component. 

Calculate the remainder from the above division. What does this 
number tell you? 

g. Use the println command to output your results in any fashion that 
you like. 

 Using your knowledge of order of operations, by hand calculate the 
result from the following calculations. Do you get the same result as posted? 

a. 6+5*2+10  = 26 
b. 10*10+10*10  = 200 
c. (1+1)*(2+2)  = 8 
d. 6%2%2%2  = 0 
e. 1%2  = 1 
f. 1+2-3*4/5%6  = 1 

 This is a tedious exercise, but will really give you a lot of practice 
with the coordinate system and using variables. You will 
make a program to generate the crosshairs on the right, 
based on three initial variables: spacing, crossX, and 
crossY. The x and y is the center of the cross hairs, and 
the spacing defines how large it is. 

a. Create the top center triangle first. Create 6 
variables, two per point. For example, t1LeftX 
and t1LeftY to represent triangle 1’s left point 
X and Y position. 

i. For the x coordinates, the center triangle point is at the crossX. 
The left and right are offset by crossX plus or minus the 
spacing. 

ii. For the y coordinates, the center triangle point is offset from 
crossY by the spacing. The top two points are offset by 
2*spacing. Hint: the y coordinates of the top two points are 

Ag 

CuSn 

CuSn 



 

Page 56 of 412  © James Young, 2015 

the same, so once one is calculated, copy that result into the 
other variable.  

b. Then, create the bottom triangle in a similar fashion. Notice that the x 
coordinates of the bottom triangle are the same as the top. Do not re-
calculate them, but instead copy them from the first triangle. 

c. Do similar operations for the left and right triangles. 
d. Try changing the size and position of your crosshair to make sure your 

variables and calculations are working properly! 

 Copy-paste the cat example from the unit, where you can change 
variables to move it around. You will add one more functionality: scale. By 
changing a variable, try to make it so you can shrink or grow the head. There are 
a lot of ways to do this, my steps is just one way. 

a. Create a variable called scale, and set it to the size of the head (300 
in this case). Calculate the other sizes (nose, pupil, etc.) based on this. 
E. g., the pupil is currently one twentieth of the head size and the nose 
is 1 tenth 

b. Here is the tricky part: all of your offsets, for the whiskers, eye locations, 
etc., will need to change. You already have the numbers on the 300 
scale for all components, but will need to think about how to have them 
scale automatically.  

i. Hint: your numbers (such as the whiskers being 25 or 50 offset) 
are on the 300 scale. How can you change scales? Careful, with 
integer division you cannot do straight percentages. 

 

Learning Objectives 

How did you do? Go back to the beginning of the unit and check how you measure 
up to the learning objectives. 

 

  

How did you do? 

Au 


