

Page 151 of 412 © James Young, 2015

 TRUE AND FALSE – BOOLEANS

Summary
This section covers boolean logic, how computers work using true and false. You will
learn how to store and calculate Booleans, as well as how to make your program do
different things based on Booleans.

In this section, you will…

 Learn about booleans, how computers work on true and false values instead of
numbers.

 Learn how to make your program do different things based on the conditions
 Learn basic boolean operations such as not, and, and or.
 See how variable scope is impacted by conditional programming

Learning Objectives
After finishing this unit, you will be able to …

 Create boolean variables and store true and false in them
 Use boolean variables in if statements to have conditional programs: actions

that depend on a boolean test.
 Use else blocks to have code run when a condition is not true
 Perform basic boolean operations, the not, and, and or operations.
 Use nested if statements, when one conditional is inside another.

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 152 of 412 © James Young, 2015

 Introduction
It’s time to learn a new data type: let’s learn about Booleans!

While integers and floats can have billions of different values
stored in them, boolean variables can only have two
different values: true and false. You make them with the
boolean keyword.

And, as shown in this example, you can store true or false just by typing those
words. Be careful, they need to be all lower case.

So far, it may not be clear why this is useful. But now that we have booleans, we can
do conditional statements!!! Program code that only runs if some condition is true.

 Basic Conditionals
So far, our programs run in a pretty straight path. We put a series of commands into
Processing, and it runs them straight through in the same order every time, and runs
every single command. What if we only want commands to run some of the time?
Remember our early example of drawing lines behind the mouse to make a paint
program? What if we only want to draw when the mouse button is pressed? What if
we want to erase the screen after so many lines? What if we want to change the
color based on where it is drawn?

All of these require a new way of thinking about programming. They require an “if X
then do Y” type of logic that is not possible with the tools we learned so far. We need
a way to tell processing which lines of code are run and which are not, and under
which conditions. Here is the syntax in processing:

Be careful: the boolean value is in round brackets, and it is followed by a block
of code in curly brackets. With this syntax, if the boolean value is false, the entire
code block is skipped. If the boolean value is true, then the code block is executed.
So far, we haven’t learned how to do much with Booleans, except store true or
false in a variable, so this looks boring. I’ll show you some great built-in boolean

boolean jimIsRich = false;
boolean teoIsCute = true;

if (booleanValue)
{
 // then do this!!
}
// more program

Not bullion..
unfortunately

Page 153 of 412 © James Young, 2015

values that processing offers, to make things a little more interesting.

These are built in variables that processing offers. Before starting the draw block
each time, processing will check the mouse and keyboard, and set those variables
to true or false accordingly.

Let’s try it out! Try the following program:

This will continually print the status of the mouse button. It should start by printing a
series of false to the console. If you click on the canvas (it has to be on the canvas),
and hold the button down, you’ll see the true come up.

Note that this tests if the mouse is currently pressed at that draw block. It will be
true as long as you are holding it down. Even if you try to click very quickly, it will
probably be true for several draw cycles.

Next, let’s take our previous example of a drawing program. I’ll copy it here:

Type it up and make sure it works. Let’s update this so that it only draws when the
mouse button is pressed. Remember, we use the if syntax above:

boolean mousePressed; // true if mouse button is down
boolean keyPressed; // true if a key is being pressed

void draw()
{
 println(mousePressed);
}

void setup()
{
 size(500,500);
 background(0);
}
void draw()
{
 stroke(255);
 line(pmouseX,pmouseY,mouseX,mouseY);
}

if (mousePressed)
{
 line(pmouseX,pmouseY,mouseX,mouseY);

Page 154 of 412 © James Young, 2015

Notice that, like with other blocks, I indent this as well. Indentation cumulates to
improve readability (check the full program on a later page).

In this case, each time draw runs, your code will check if the mouse is pressed. If
that variable stores false, then the block is skipped. When it has true, then that block
is executed. Let’s add another condition. Let’s clear the screen if a key is pressed
on the keyboard!

Now we have a much more functional program!! These lines of code inside the if
blocks only run when the booleans are true. When they are false they are skipped.
Also keep in mind that, because it is a code block, you can put many commands
inside there just like any other block. Here is my whole program

}

if (keyPressed)
{
 background(0);
}

void setup()
{
 size(500,500);
 background(0);
}
void draw()
{
 stroke(255);

 // only draw when pressing the mouse button
 if (mousePressed)
 {
 line(pmouseX,pmouseY,mouseX,mouseY);
 }

 // erase the screen if any key is pressed
 if (keyPressed)
 {
 background(0);
 }
}

Page 155 of 412 © James Young, 2015

Warning: there is a huge, very common bug with if statements. Up until now in the
course, you put a semi colon after most lines. However, just like with functions, you
don’t put a semi-colon after an if statement. Unfortunately, if you do put a semi
colon, the program will still run, but incorrectly. Consider the following example:

Do you see that extra semicolon? If you run this code, it will run, but work incorrectly.
From the computer’s perspective, that semi colon means end of command. So, the
computer reads to itself: If the mouse is pressed, end of command (do nothing). OK.
Next, do that whole block and draw the line. In this case, the line is drawn regardless
of the value of mouse pressed. The block is not connected to the if statement and
is always run. This is very confusing: if you have an if statement that seems to
always run, check for an extra semi-colon.

 Boolean Negation
So you now know how to do something IF a boolean is true, but how can we do
something if a boolean is not true? For example, in our drawing program, what if we
want to detect if the mouse is not pressed, and put a black circle under the mouse
at that time, to erase what is under it? How can we say - if the mouse is NOT
pressed?

We need the negation operator. The negation operator takes the opposite of a
boolean value. If we have true, it gives us false. If we have false, it gives us true.
All that we have to do is to put a ! in front of it, the exclamation mark:

For example, instead of doing something when the mouse is pressed, we can do
something when the mouse is not pressed

if (mousePressed);
{
 line(pmouseX,pmouseY,mouseX,mouseY);
}

!boolean // gives you the opposite of a Boolean

// if opposite of mousePressed is true
// --> if mousePressed is false
if (!mousePressed)
{
 stroke(0); // change the drawing color to black
 fill(0);
 ellipse(mouseX, mouseY, 50, 50);
}

Page 156 of 412 © James Young, 2015

Now you have an eraser! You can just scrub over anything that you drew to erase it.

You can put the negation operator (!) in front of any boolean variable or value, in
any context, and it will give you the opposite.

 If-then-else
This pattern that we just saw – do something if true, do something else if not true, is
very common in programming. Processing provides special syntax just for this as
per below. After the if block, use the keyword else, and provide a new block. The
latter block is only run if the test is false:

Try on your own to use this new technique to update our program above.

 Nested if statements
Once you are inside an if or an else block, you can freely add another if
statement inside. This if statement is part of the block, so it only gets considered if
the outside test is true. Currently, if the user presses a key the screen gets cleared
to black. Let’s make it so that if they press a key AND the mouse is down, then the
screen gets cleared to white. First, we check if the key is pressed. If that is true, and
we’re inside that block, then we use a nested if statement to check if the mouse is
pressed.

if (boolean)
{
 // do if test is true
}
else
{
 // do if test is not true
}

if (keyPressed)
{
 // this is ONLY checked if the above keyPressed is true.
// Otherwise, the test is never even run.

 if (mousePressed)
 {
 background(255); // mouse and key pressed
 }
 else
 {
 background(0); // key pressed but not mouse

Page 157 of 412 © James Young, 2015

This can get complicated very quickly. The trick to getting this is to know what
happens at each step, and realize that the computer steps through blindly and
doesn’t look at the whole program. In this case, if the first if statement is false, it
jumps and skips everything. The inside stuff is only run if the first test I true. Again,
if the keyPressed boolean is false, then the whole block gets skipped and no
internal if statement is ever checked.

You can nest as many if statements inside if statements as you want. This can
get very deep. Usually, however, if you nest deeply it becomes very confusing so we
try hard to avoid that to keep things clear.

 Logical Operators
In the above example, we kind of combined multiple booleans. We said if THIS is
true, and, if THAT is true, then do something. Processing has logical operators that
help with this kind of problem. For example, the above program could be done a little
more cleanly, but so far, we can do this kind of AND logic by nesting if statements.
However, there is a better way to do it. We can combine two booleans using an AND
or an OR operator. This may be a little confusing, so let’s look
at the syntax first. The following two operators, the AND and the
OR operators, take two booleans, and produce a new one
depending on their values.

booleanA && booleanB AND, true if both are true

booleanA || booleanB OR, true of one is true

The AND operation uses two ampersand signs, commonly
known as AND signs. The OR operator uses two pipe symbols,
which you may be less familiar with. Take a moment to familiarize yourself with these
on your keyboard.

We can use these to generate new booleans. For example, if we want a program to
draw only if the mouse is pressed and a key is pressed, then we could do something
like the following:

In this case, if mousePressed is true, AND, keyPressed is true, then shouldDraw

 } // end the inside else block
} // end the outside if statement

boolean shouldDraw = mousePressed && keyPressed;
if (shouldDraw)
{
 line(pmouseX,pmouseY,mouseX,mouseY);
}

What about
XOR??? Leaving it
for another course?

Page 158 of 412 © James Young, 2015

is true. Otherwise, shouldDraw is false. Then, if shouldDraw is true, we draw our
line.

We don’t actually need the extra variable here, and the logical operator can be used
directly within the if statement:

Although this boolean logic seems quite simple, it gets confusing fast, and it causes
a lot of trouble for people. In particular, we do not think this way in daily life, and so
we often get tripped up. The following charts may be useful; they are called truth
tables, which give the full rundown of what different boolean values give you as a
result with the operator.

AND (&&) truth table
A B Operation Result
false false A && B false
true false A && B false
false true A && B false
true true A && B true

OR (||) truth table
A B Operation Result
false false A || B false
true false A || B true
false true A || B true
true true A || B true

 If Statements, Blocks, and Scope
We briefly discussed scope rules regarding variables, and the different blocks of our
program. As a reminder, scope is the range within which a variable exists.
Outside of that scope you cannot access or work with that variable. In fact, a variable
gets destroyed and loses all its information once the program leaves the scope.

Also as a reminder, the scope of a variable is the block it was created in. So,
variables created within one block can ONLY be accessed within that block. Each
code block has its own local scope. This was true for functions, and is also true for
if statements. For example, try the following code:

if (mousePressed && keyPressed)
{
 line(pmouseX,pmouseY,mouseX,mouseY);
}

Page 159 of 412 © James Young, 2015

It doesn’t compile! Processing says: Cannot find anything named
“freshness” on the print command. This is frustrating because you can see that
you created the variable just above that line. The issue is that the freshness variable
is created inside the if statement block. Once that block is over, the variable is said
to be out of scope, and is destroyed. How do you fix this?

You can fix it by moving the declaration outside of the if block. If you declare the
variable beforehand, then it is created in the broader scope and not limited to the if
statement. Be careful: if you create the variable outside the block, you need to give
it an initial value. Why? Try it out, and think about on your own. Mentally work
through all the examples. As your instructor for clarification.

What about nested blocks? Let’s look at the following:

In this case, does the print statement work? Yes – because the nested if statement
is inside the scope of the outer one. Consider the example with highlighted blocks:

boolean hasUsedScopeMouthWash = true;
if (hasUsedScopeMouthWash)
{
 int freshness = 10;
}
print(freshness);

if (booleanA)
{
 int d = 12345;
 if (booleanB)
 {
 println(d);
 }
}

if (booleanA)
{
 int d = 12345;
 if (booleanB)
 {
 println(d);
 }
}

Page 160 of 412 © James Young, 2015

As you can see, the outer if statement scope is defined by the blue box. The inner
scope, defined by the orange box, is completely within the blue box, so it is within
the scope. Since the int d variable is created within the blue box, and the orange
box is within the blue box, the print statement can see the d variable.

What about this similar example?

In this case, there is a scope error, on the d2 variable. You can see this in the
following copy with the scope highlighted:

if (booleanA)
{

int d = 12345;
 if (booleanB)
 {
 int d2 = d*2;
 }
 println(d2);
}

Since d2 is created within the orange scope, of the internal if statement, it gets
destroyed as soon as the orange block ends. Thus by the time print tries to access
d2, it is no longer available.

Scope can actually get quite confusing, quite quickly. Consider this hypothetical code
for calculating what may be considered a good temperature based on what region
you are in, with code blocks highlighted:

if (booleanA)
{

int d = 12345;
 if (booleanB)
 {
 int d2 = d*2;
 }
 println(d2);
}

Page 161 of 412 © James Young, 2015

Can you spot the two errors? goodTemp is out of scope at the print statement, since
it was created in the blue scope. The test on coldAdjust is out of scope on the if
statement, since it was created in the white scope.

How to avoid scope issues: ultimately, you will develop a sense and clear
understanding for scope. In the meantime, try to declare your variables at the top of
the program, the top of the draw block, or the top of the function for now.

 Check your Understanding: Exercises

 Create an active Processing program that draws a line from the
origin to the mouse position, but only when the mouse is pressed.

 Create an active Processing program that draws random lines on
the screen if a key is pressed on the keyboard, and clears the screen if a mouse
button is pressed.

 Create an active Processing program that draws a white circle under
the mouse if a key is pressed on the keyboard OR the mouse is pressed.
Otherwise, draw a black circle under the mouse.

if (goodWeather)
{
 int goodTemp = 25;
 if (inWinnipeg)

{
 boolean coldAdjust = true;
 goodTemp -= 5;
 } else if (inAtlanta)

{
 goodTemp += 5;
 boolean warmAdjust = true;
 if (coldAdjust)
 goodTemp += 5;
 }
}
println(goodTemp);

Check your Understanding

CuSn

CuSn

CuSn

Page 162 of 412 © James Young, 2015

 Create a drawing program as introduced in this chapter, that draws
a solid line under the mouse if a mouse button is pressed. In this case, if a key is
being pressed on the keyboard, draw a dashed line under the mouse instead.
You can make a dashed line by alternating which color is drawn each time,
between white and black. Hint: You can use this using a boolean variable and an
if statement.

 Create an active Processing program that draws a circle in the
middle of the canvas, that slowly grows each frame. If the mouse is pressed,
instead of growing, the ball should shrink.

 Make a program that enables a user to steer a square around the
screen. This control scheme is quite hard to control.

a. If a mouse button is pressed, the square moves left. Otherwise, it
moves right.

b. If a key is pressed on the keyboard, the square moves down.
Otherwise, it moves up.

 Make a program similar to the above exercise of moving a square
around, except this time, you move a circle. The circle has a movement angle
and speed that is stored globally. You will need to use your basic trigonometry.

a. If the mouse is pressed, the angle increases.
b. If they keyboard is pressed, the angle decreases.

 Make a program that draws a square at a random location on the
screen. The square is normally white. If the keyboard OR the mouse is pressed,
but not both at once, the square should be black. If both are pressed, it should
be white. This should use a single if statement and no nesting.

 A problem with your Processing programs is that your mouse and
keyboard variables mousePressed and keyPressed tell you only that it is
currently down. What if you want something to happen only once when the
mouse is pressed? For example, place a circle under the mouse only once? If
you make a program to draw a circle when the mouse is pressed, it will draw it
each frame, and will animate as you move the mouse.

a. Make a program that first detects when the mouse is pressed and
released. When the mouse is pressed, write “mouse down” only once
to the console. Nothing else should be printed until the mouse is
released. At that point, print “mouse up”. Hint: use a global to
remember the last mouse state at watch for transition.

CuSn

Ag

Ag

Ag

Ag

Au

Page 163 of 412 © James Young, 2015

b. Now that you can detect a mouse press, draw one circle under the
mouse each time it is clicked.

c. Update the program to similarly detect when a key is pressed.

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

Page 164 of 412 © James Young, 2015

(page intentionally left blank)

