

Page 17 of 412 © James Young, 2015

 PROCESSING AND PROGRAMMING BASICS

Summary
In this section, you will…

 Get and install the Processing program which enables you to write Processing
computer programs

 Familiarize yourself with the Processing program, and the processing canvas
 Learn basic “syntax”, the rules of writing programs
 Write your very first program, and, encounter your first errors
 Learn about drawing and painting order, and how to change the color of what is

drawn

Learning Objectives
After finishing this unit, you will be able to write basic Processing programs that draw
simple shapes on a drawing canvas. Specifically, you will be able to:

 Choose and set the canvas size for your programs.
 Set the location where shapes are drawn on the canvas.
 Set the background, outline, and fill colors of your canvas and shapes.
 Draw lines, circles and ellipses, triangles, and points.
 Insert in-line and block comments to describe your program.

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 18 of 412 © James Young, 2015

 Introduction
Processing (processing.org) is a Java-derivative language designed to enable
programmers to quickly and easily learn how to do really cool
stuff, mostly through computer graphics. While it is often seen as
a teaching language, professionals use it as well for small
projects and prototyping. Processing is Java under the hood, so
it can grow with you as you become an expert. It also has full 3D
graphics built in so you can build some really cutting-edge
graphical programs with it.

You need to download Processing onto your own computer.
Processing is free, and easy to install (ask the help center or the
instructor if you’re stuck). To start, go to http://processing.org/
download and grab the latest version 3. The older versions will
work but there will be slight differences in how it looks, so don’t
bother with that. Also, there is an installation guide for Windows,
Mac, or Linux, which can help you to get it running, at
https://processing.org/tutorials/gettingstarted/. Once you have it installed, you just
double click on the processing.exe file and it will start to run.

Once started, you will see the Processing Development
Environment. This manages all the under-the-hood parts
of computer programming – we’ll talk a little about that later
in the course. For now, this enables you to learn to write
computer programs without worrying about the nitty-gritty
details of how the computer goes from what you type, to a
program that runs and starts up. This is a good thing.

Processing does a lot of
advanced things under the
hood. It converts your
program to JAVA, then
converts that into a
language called Java Byte
Code, runs a Java Virtual
Machine program, and runs
your program with that.

Processing has
less testing with
Window 8, and you
should probably
download the 32
bit version, which
has been reported
to be more stable.

Page 19 of 412 © James Young, 2015

Let’s take a closer look at the processing development environment.

As the default program name suggests, Processing calls their projects sketches.
This is fitting, as you get to quickly sketch up your ideas roughly to see how they
work. Processing stores your sketches in a sketchbook, which is just a folder on your
computer.

You can change where these are stored (e.g., to a backed up location!!!) by looking
at the FilePreferences menu dialog. All your sketches in your sketchbook can
also be seen by going to File->Sketchbook. Discussing backup options is
beyond the scope of this course, but it is highly recommended to have all of your
work automatically backed up using one of the many free services currently available.
Your University has a plan for a large amount of free storage. In addition, popular
options include Dropbox, Microsoft One Drive, or Apple iCloud. Your instructor is

Your
processing
version

The name of your current project
(sketch). New sketches are called
sketch_YYmmdd until you save them
with a better name

Text editor –
this is where
you write your
programs

This must say
“Java” or you are
using a different
processing flavor.
Fix it by selecting
Java

Tabs for multiple
files per project.
You won’t be
using these.

RUN and STOP
button to start and
stop your
program. Triangle
is run, square is
stop.

Messages show up
here relating to your
program and what you
are doing

This is the CONSOLE,
where you get annoying
messages when there
are problems. You will
learn to hate this part 

Line numbers.
Errors usually tell
you what line
number the error
is on.

This is the Errors tab.
Click here to show
program errors. This
will update as you type,
which is very useful!

Page 20 of 412 © James Young, 2015

unlikely to have patience for
problems relating to a crashed
hard drive or lost laptop.
Important: Processing saves
new sketches in a temporary
location until you specifically
save it to your own location, by
clicking File->Save. Be sure to
do this immediately when starting
a new project so that you do not
lose your work if your computer
crashes.

 The Processing Canvas
There is one more element to the
Processing environment to
introduce: the Canvas (officially
called the Display Window, but I
think Canvas is a better name). If
you press play in Processing
(even without any program typed
up), an additional window pops up: the Canvas! You can press stop to get rid of the
canvas and stop it from running.

Right now, the canvas looks very boring, but – just like a painting canvas – this is
where you can be creative and start drawing whatever you want. Unfortunately, you
cannot just paint by dragging the Mouse, but you can do it with programming instead!

Notice that the canvas has two sections. The center square, and the outside grey
area. The center square is actually the canvas, where drawing happens. The outside
is just “padding” to make it fit in the window.

Now, if you want to draw something on the canvas,
you need a way to specify where to draw things. I
suppose you could simply point with your finger or
mouse. However, this limits you to placing things
once. What if you want to animate something, like,
to make a ball move across the screen? And what
if this is hard to predict, like in a video game? The
position keeps changing, and we need to be able
to set it in our program. Because of this, the canvas
uses a simple 2D coordinate system (Cartesian
coordinates in Euclidean space), like you used in
high school for graphing functions. There is an X

The CANVAS!

Notice how the
play button
highlights to tell
you that it is
running

Why can’t I just point where
I want to draw things???

Page 21 of 412 © James Young, 2015

axis, which goes from left to right, and a Y axis, which goes from top to bottom. The
top-left corner of the screen is (0,0). There are no negative coordinates. Notice the
important difference when compared to high-school math: the Y coordinate
increases as you go down. In regular math, it increases as you go up. Unfortunately,
that is due to an old computer standard and is something you will have to remember.

The unit of measure is the pixel, which is the smallest unit of display on your screen.
In processing, the canvas default size is 100 by 100 pixels. Don’t worry – we will
learn how to make a bigger canvas soon. Also, if you draw off the canvas it’s no
problem, processing just stops at the edge and continues your program.

 Basic Processing Syntax: a command
Computers are stupid. To give commands to a computer, we have to follow very strict
rules of how to form the command. In programming, these rules are called the
syntax of a language. Even if your command looks reasonable to you, if you do not
follow the syntax rules, your program will not work. Think of syntax like grammar,
except that if you make even the simplest grammar mistake, the computer has no
clue what you tried to say. Throughout this course you will learn a lot of different
syntax rules. Let’s start with the simple command. Let’s learn how to tell processing
to draw a line on the canvas.

In order to give a command to a computer, you need to specify what command (e.g.,
draw a line on the canvas), and you need to give specifics to the command (e.g.,
where to draw the line on the canvas) – these are called parameters to the command.

Here is the basic syntax for a processing command:

You give the name of the command, followed by an
opening parenthesis (the regular round brackets). Then
you add some parameters, with commas between them.
You don’t put a comma after the last parameter. Then you
add a closing parenthesis, and you finish with a semi-
colon. The semi-colon means “end of command”. You
can also add spaces here around the parenthesis and
commas, but the formatting is generally like in the
example above.

 Your First Processing Command – Draw A Line
Type the following single line of code into the Processing development environment:

command(parameter1, parameter2,...);

line(0,0,100,100);

I hate semi-colons. Both in
grammar and in programming

Page 22 of 412 © James Young, 2015

and press run. You should see a line being drawn from the top-left corner of the
canvas (0,0) to the bottom right corner (100,100). Didn’t work? Try the
following...

 Did you remember the semicolon at the end?
 Did you use the correct brackets? The () and not [] or { } or「」?
 Did you type line and not LINE or Line? It is case sensitive (see below)…

Remember that the canvas defaults to being 100 by 100 pixels, and the top left
corner is coordinate (0,0). So, the line command takes four parameters: the first
two are the x and y coordinate where the line starts, and the second two are the x
and y coordinate of where the line ends. You can imagine the command is like this:

and you can plug in whatever values you want. Try it, try drawing the line from and
to different spots on the canvas.

So, how do you know which parameters (the stuff in brackets after a command) to
use and what they mean for a command? Basically, it’s confusing, and every
command is different.

When is the last time you used the “Help” menu in a
program? Never? Did you notice that many programs got
rid of the help menu (like MS Office)? Well, programmers
use on-line help all the time. Reference manuals are very
useful for programming because it is not reasonable to
expect people to remember all these details.

Open Processing, and click HelpReference. It
should open a reference manual in your primary browser. Look for the line()
command (hint: it’s under 2D Primitives) and click on it. At first, this page may look
overwhelming, but you will learn to love this reference manual. Notice that it has
examples of how to use the command. It has a detailed description, much of which
you will not yet understand. That is okay, you should be comfortable with peeking at
it and grabbing what you understand. And it even has a Syntax section that explains
how to use the command, with explanations of what the
parameters are. Take a minute to read the page.

 Your very first Syntax Errors
No one avoids mistakes in their syntax (syntax errors). The
world’s best and most experienced programmers (yes, even
the dog!) have regular syntax errors. Syntax errors are not
only annoying because you need to know the rules, but our
stupid computers are actually really bad at explaining what

line(x1,y1,x2,y2);

Having a perfect memory
helps intensely!

Syntax Errors are compile-
time errors. This means that
Processing refuses to even
convert your program into
computer language (binary).
The error happens before it
has a chance to run!

Page 23 of 412 © James Young, 2015

is wrong with your syntax. To make things worse, for all its awesomeness,
Processing is particularly bad at explaining the syntax errors. Try this, type the
following command in Processing – this is the command from the previous section,
but we removed the semi-colon

When you click run, nothing happens. If you look down on the Processing window
near the bottom, you will see in the message bar that it says unexpected token:
null. Now, I’m not sure what engineer thought that this
is a nice, descriptive error message, but it’s what we’re
stuck with. In this case, what it’s really trying to say is: I
expected something here (ahem, a semi colon), but I
found nothing!! (null). One nice feature is that
processing moves the cursor to the spot where it thinks
the error is (the cursor is that vertical blinking bar that
tells you where you are typing).

Processing 3 has a great new feature
that tries to help you out with common
errors. If you click on the “Errors” tab
at the bottom of the processing
window, you should see a list of
errors. Here, it suggests that your
problem is that you are missing a semi
colon, and it even tells you which line
(line 1 in this case). If you click on the
error, it will even take you to that spot in
your program, which is useful as your
programs get large.

Fix the syntax error by adding a semi-
colon. Your program should work now.

Let’s try another one:

Now, Processing gives the syntax error:
The function LiNe(int, int,
int, int) does not exist. We’ll learn about those ints later, but basically
Processing doesn’t understand the command LiNe. Processing (like many
languages), is what we call case-sensitive. This means that it sees upper case
and lower case letters as completely different letters. The command line will only

line(0,0,100,100)

LiNe(0,0,100,100);

Tokens? Are we at an arcade?
Is null a new video game?

Page 24 of 412 © James Young, 2015

work if all letters are lower case. You’ll catch yourself making this error throughout
the course. So! If Processing says something doesn’t exist, make sure you spelt it
correctly AND are using the correct upper and lower case letters.

 More Processing Commands
We need to improve our measly tiny canvas! Biggest canvas is best canvas, right?
Whip out our Processing reference (remember, HelpReference) and look up the
size() command. (It’s under Environment). Take a quick look through here. Notice
how much of it will be over your head (whoa!! Rotate!
3D! what is a renderer?). That’s OK – it’s a reference,
after all, and will include advanced stuff. What you need
to home in on is the simple examples and the syntax.
The syntax section says:

where w is the width of the display in pixels, and h is the
height. So, try placing the following command in a clean processing window (if you
have stuff in there already, erase it first)

and press play. You’ll now have a nice big canvas! You can even make it bigger!
Leave this at the top of your programs and you will always have a bigger canvas.

Another great command is ellipse – which lets you draw ellipses and circles.
Remember, a circle is just an ellipse with the same width and height. Take a peek at
the reference page again for ellipse, under the 2D
Primitives section, and you’ll find the following syntax
entry (no seriously, go look. This is good practice).

where a and b are the x and y of the ellipse center, and c
is the width, and d is the height (a,b,c, and d are kind
of stupid names for those parameters!!)

So let’s draw a circle of diameter 50 at the center of the screen. Remember that our
size is now 500 by 500, so the center is (250,250). Erase your processing program
and copy the following into processing:

size(w,h);

size(500,500);

ellipse(a, b, c, d);

Renderer? I like to rend meat
from bones at Christmas!

I went and looked – did you??

Page 25 of 412 © James Young, 2015

If all goes well, you should see the canvas to the right with a
single circle in the center. Try playing with the parameters of the
commands to see what kinds of results you can come up with!

 Check your Understanding Part 1 – a quick break!
Usually exercises come at the end of a unit. However, at this stage you need to do
some work on your own.

 Investigate the following commands on your own:

a. point . This draws a single point. Make a program that uses this
command at least three times. This is not a trick question – they will be
VERY small and hard to see, so look closely.

b. rect . This draws a rectangle. Make a program that draws at least
three rectangles.

c. triangle . As you may have guessed, this draws a triangle given
three points. Make a program that draws at least three triangles.

 Using the commands you learned so far, create the sketch shown to
the right. It has 1 line, 1 ellipse, and 1 triangle.

 Paint on top of Paint (order of commands)
When you draw on a canvas, you can paint a nice picture
and then, paint on top of it to hide whatever was
underneath. Because of this painters need to plan ahead
– paint the nice broad blue sky first maybe, then add
some trees on top. Doing the trees first and then painting

size(500,500);
ellipse(250,250,50,50);

Did you know that the Mona
Lisa was painted on top of a
different portrait?

Check your Understanding

CuSn

Ag

Page 26 of 412 © James Young, 2015

in the blue sky is much harder.

Processing has the same principle. In computer programming, operations are
generally run from top to bottom. Later you will learn techniques to make it jump
around like crazy, but for now, we start at the top and go down. Try typing and running
the following code

You will see the image on the right. Where is the line?
Processing didn’t forget to draw it. It drew it first, since – top
to bottom, the line command comes first – and then drew the circle on top of the line.
Try the following variant changing the order of commands:

Now, you see the right image instead.

The order of the commands issued to the program will
impact the result. This is not only the case when drawing images, but later, you will
see also that this is the case when doing other operations like mathematics. Just
remember – top to bottom, one command at a time.

 Organizing Bigger Scenes: Adding Comments
Quick! What does the following program do?

size(500,500);
line(225,225,275,275);
ellipse(250,250,200,200);

size(500,500);
ellipse(250,250,200,200);
line(225,225,275,275);

size(500,500);
ellipse(250,250,300,300);
triangle(375,80,300,150,400,200);
triangle(125,80,200,150,100,200);
ellipse(175,225,60,40);
ellipse(325,225,60,40);
ellipse(175,225,15,30);
ellipse(325,225,15,30);
line(250,300,200,275);
line(250,300,300,275);
line(250,300,190,300);
line(250,300,310,300);

Page 27 of 412 © James Young, 2015

What do you mean you have no idea? Isn’t it obvious? No?
Why not? This is hard to understand because series of
commands are hard to understand unless you are the one who
wrote them. And even then, give it a few weeks, and you’ll forget too. There are a lot
of ways that programmers use to make their code more readable and
understandable by people. One very important way is the addition of comments.

Comments are English language additions to programs that only serve the purpose
of helping a person read the program. The computer completely ignores them.

One type of comment is the block comment. This lets you tell Processing that a
whole region is text-for-humans and no computers are allowed inside! You can make
a block comment by starting it with the /* symbols (forward slash then star) and
ending with */ symbols (star then forward slash). For example

These are called block comments because they can span many lines and make up
a whole block:

Everything between that start and end character is ignored by the computer.

A very common block comment is the header of your program. At the beginning of a
program it is common to give the key information about the program, such as who
made it, what the purpose of the program is, etc. Header comments are required
for all your assignments.

Let’s add a header comment to our previous program from the beginning of this
section.

line(250,300,200,325);
line(250,300,300,325);
ellipse(250,300,30,30);

/* this is a comment */

/* this is a comment, too
 But it keeps on going and going.
 Eric the fish.
 Eric the fruit bat
 Eric the cat
 And don’t forget Eric the kangaroo
*/

What if I want to put the */
symbols inside a comment?
Will the computer know it’s
part of my comment or get
confused, thinking I ended
my comment?

I know! 42!

Page 28 of 412 © James Young, 2015

/*******************
* Cat Face! Draw a cat face on the screen
* author: Teo the dog
* version: try #awesome
* purpose: to show how a cat can be drawn
********************/
size(500,500);
ellipse(250,250,300,300);
triangle(375,80,300,150,400,200);
triangle(125,80,200,150,100,200);
ellipse(175,225,60,30);
ellipse(325,225,60,30);
ellipse(175,225,15,30);
ellipse(325,225,15,30);
line(250,300,200,275);
line(250,300,300,275);
line(250,300,190,300);
line(250,300,310,300);
line(250,300,200,325);
line(250,300,300,325);
ellipse(250,300,30,30);

Now we understand what this program does.
The graphical output is shown on the right:

Now, what if I asked you to change the size of
the nose, or move the eyes. Which commands
would you change? Which ellipse command
draws each part? You may be good enough to
eyeball it (hah!) and figure out which numbers
correspond to which piece. But, there’s an easier
way. Inline comments.

Inline comments are comments that only go
from where it starts until the end of that line. It’s
a simpler comment. You start them with // and
everything after it on the line is ignored.

We can add comments when our program is not clear, to help the reader (and
ourselves!!) to understand what is going on.

line(10,10,200,200); // this draws a diagonal line

Page 29 of 412 © James Young, 2015

Also notice how I use whitespace (extra lines) to group. Now check out our fully
commented version of the program.

/*******************
* Cat Face! Draw a cat face on the screen
* author: Teo the dog
* version: try #awesome
* purpose: to show how a cat can be drawn
********************/

size(500,500); // make a 500x500 canvas

//draw the head
ellipse(250,250,300,300);

//draw the ears
triangle(375,80,300,150,400,200);
triangle(125,80,200,150,100,200);

//draw the eyes
ellipse(175,225,60,30); // left eye
ellipse(175,225,15,30);
ellipse(325,225,60,30); // right eye
ellipse(325,225,15,30);

//whiskers!
line(250,300,200,275);
line(250,300,300,275);
line(250,300,190,300);
line(250,300,310,300);
line(250,300,200,325);
line(250,300,300,325);

// draw the nose. draw after whiskers for nice overlap effect
ellipse(250,300,30,30);

Here is a comparison to the original version of the program:

Page 30 of 412 © James Young, 2015

To the computer, the program is identical. But to a programmer, the commented
version is much easier to read and work with. You will be required to properly
comment your assignments.

One last thing. When do you use a block comment, and when inline? It’s basically
up to you, but usually inline is for small comments and block for large.

 Choosing your Paint
Processing is capable of full color, but for simplicity sake, in
this course we generally stick to black and white – or more
accurately, greyscale. Processing is capable of a full range
from pitch black (well, as black as your screen) to full white.
You set the color by specifying it by number. You can think
about this number as how much brightness. So, a color of 0
is full black. White, however, is not 100 or some other
reasonable number. The brightest color is actually 255.

size(500,500);
ellipse(250,250,300,300);
triangle(375,80,300,150,400,200);
triangle(125,80,200,150,100,200);
ellipse(175,225,60,40);
ellipse(325,225,60,40);
ellipse(175,225,15,30);
ellipse(325,225,15,30);
line(250,300,200,275);
line(250,300,300,275);
line(250,300,190,300);
line(250,300,310,300);
line(250,300,200,325);
line(250,300,300,325);
ellipse(250,300,30,30);

/*******************
* Cat Face! Draw a cat face on the screen
* author: Teo the dog
* version: try #awesome
* purpose: to show how a cat can be drawn
********************/

size(500,500); // make a 500x500 canvas

//draw the head
ellipse(250,250,300,300);

//draw the ears
triangle(375,80,300,150,400,200);
triangle(125,80,200,150,100,200);

//draw the eyes
ellipse(175,225,60,30); // left eye
ellipse(175,225,15,30);
ellipse(325,225,60,30); // right eye
ellipse(325,225,15,30);

//whiskers!
line(250,300,200,275);
line(250,300,300,275);
line(250,300,190,300);
line(250,300,310,300);
line(250,300,200,325);
line(250,300,300,325);

// draw the nose. draw after whiskers
for nice overlap effect
ellipse(250,300,30,30);

Well, I’m color blind so I
don’t care. Grey is great!

Page 31 of 412 © James Young, 2015

For Information Only (not testable): You don’t really need to understand why, but
for the curious, computers love powers of two. That’s because when you store
everything in binary (on and off switches), you end up hitting powers of two all the
time. If you are curious about the math, Processing sets aside 8 on or off switches
for the greyscale color – this is called an 8 bit number. If you have n switches lined
up in a row, imagine light switches, then you end up have 2n possible combinations
of those switches. So with 8 switches, you get 28 = 256 combinations. 0...255 is 256
different numbers (include the 0!!).

You can set the paint brush color in processing with the stroke command.

where gray equals the shade from 0...255.

Try the following program

and this slight variation

what is the difference? Try it out. You can see that the
paint color changed.

Now, try the same comparison, but instead of drawing a
line, draw an ellipse:

Notice the difference? In the case with the black paint
(color 0), only the outline of the circle changed color and not the center of the circle!
So how would we get a black circle?

It turns out that processing has two different paints in use at any time. One is the
stroke paint (the main brush for outlines). The other is the fill paint (what goes inside
a shape).

stroke(gray);

stroke(0);
line(0,0,500,500);

stroke(255);
line(0,0,500,500);

stroke(255); // or stroke(0)
ellipse(250,250,50,50);

fill(gray) // sets the fill color from 0..255

Page 32 of 412 © James Young, 2015

So, we can do a circle with a white outline and a black fill with the following
commands.

You can also switch out your paints at any time. Remember that Processing runs top
to bottom. If you use stroke and fill, they keep fixed for all your drawing
commands until you change them. For example, you can draw a black line followed
by a white line as follows:

There is one thing remaining. How do you reset that annoying
ugly grey background? One way would be to draw a rectangle
the size of the screen with the stroke and fill color of what you want. Luckily,
Processing makes it easier: you can use the background command

For example:

Now, you have all the tools you need to do the full range of
colors!!

 Check your Understanding: Exercises

 What is syntax? In your own words, try explaining what syntax is to
a person with no programming or computer background.

stroke(255);
fill(0);
ellipse(250,250,50,50);

stroke(0); // set paint to black
line(0,0,500,500); // first diagonal
stroke(255); // set paint to white
line(500,0,0,500); // second diagonal.

background(gray) // erase the canvas and set to 0..255

background(0); // clear to black
stroke(255); // draw with white
line(0,0,500,500);

Check your Understanding

CuSn

Page 33 of 412 © James Young, 2015

a. How much leeway do you have in your syntax? What happens if you
have even a small deviation from the rules?

 Make a new Processing program with a 500x500 canvas. Draw a
line from the top left corner to the bottom right corner.

a. Did you use 500 or 499 for your end coordinate? Why? Which is
correct? (answer: 499).

b. If you have a canvas of size n by n pixels, what is the coordinate of the
last pixel in terms of n?

 Here is a program with a series of errors. One way to find the errors
is to type the program into Processing and get its help to find them. However, in
this case, look at the program yourself and see if you can spot all the errors first.
Then, try typing it all up and see if you got them all. There are a lot, 23 in total!
The final result should look like the inset at the end of the code.

/* broken program
 A bird who caught a very strong worm

canvas(500,500);
Background(0);
Strike(125);
fillColor(100);
rectangle(0,300,499);
fillColor(0);
Circle(250,350,100,50);
strike(256)
Line(250,375,200,200);
Line(200,200,180,180)
Line(200,200;180,200);
Line(200,200,210,180);
1ine(250,375,300,200);
1ine(300,200,320,180)
1ine(300,200,320,200);
1ine(300,200,290,180);

 Write a Processing program as specified below. If you forget how the

commands are used, check your class notes for examples or use the reference
in the Help->Reference menu

Ag

Au

CuSn

Page 34 of 412 © James Young, 2015

a. Make the canvas be 500 by 500 pixels
large. (use the size command)

b. Draw a perfect circle at the center of the
screen, with a diameter of 50 (use the
ellipse command)

c. Draw a line from the center of the screen
to the top left corner (use the line
command)

d. Draw a line from the center of the screen
to the top right corner

e. Make sure the circle is on top of the lines.
You should get an image as shown.

f. Make sure you program has a block comment at the top describing
your name, the course, and the purpose of the assignment. Also put at
least one in-line comment.

 Write a Processing program as
specified below. Make sure to have a block
comment at the top and proper in-line comments.
You will make the diagram as shown in the inset.

a. Set the canvas to be 500 square and
clear the background to black

b. Set the stroke and fill colors to solid
white, and draw a circle with radius 50
in the center of the screen.

c. Draw white lines from the top corners to
the ellipse

d. Set the stroke and fill colors to 150 gray.
Draw circles 25 pixels to the right and left of the center circle. Then,
draw lines to those

e. You can try adding more circles and increasingly dark colors to create
a bigger motion effect.

 Create a processing program to generate
the image on the right. There are 11 squares (one is
completely black!) so you should be able to calculate
the square positions and colors using that knowledge.
The square sizes can be whatever looks reasonable.

 Do a web search for “Droodle” – these are
popular puzzles that use line drawings to depict a
scene. At first, it looks abstract, but once you
understand what it is showing, you can see the image.

Ag

Au

Au

Page 35 of 412 © James Young, 2015

Pick a few Droodles and try drawing them with processing.

 Read the Processing tutorial on color, which can be found at
https://processing.org/tutorials/color/. While we will not use color in this course,
color is not hard, and you can quickly learn how to use it. Try modifying some of
the above examples to use color.

Learning Objectives
How did you do? Go back to the beginning of the unit and check how you measure

up to the learning objectives.

How did you do?

Au

Page 36 of 412 © James Young, 2015

(page intentionally left blank)

