

Page 295 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 ARRAY BASICS

Summary
You will learn a new fundamental programming technique called arrays. Specifically,
you will learn

 How to use arrays to overcome the limitations of creating individual variables
 How to make and use arrays in Processing
 How to use arrays with loops to quickly solve large problems

Learning Objectives
After finishing this unit, you will be able to …

 Create an array with any data type and size
 Store data in an array, and retrieve data from it
 Iterate through arrays with a loop
 Get the length of any array
 Initialize an array with literals

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 296 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Introduction
Arrays are a fundamental programming technique used to address the limitations of
creating individual variables. A great way to really understand what this means is to
work through a quick motivating example.

Let’s make a quick processing program to create a particle (small point) that fires off
from the mouse pointer at a random speed in a random direction. If it hits the edge
of the screen, start over from the mouse in a new direction at a new speed.

Our global variables include finals for MAX_SPEED (I set it to 5). In addition, the
particle needs global variables to keep track of its current position, ballX, ballY,
and variables to keep track of its speed in the x and y directions, ballSpeedX, and
ballSpeedY.

In the setup, when the program starts, set the ball position to be the center of the
screen, and generate random speeds for the X and the Y. note: make sure to include
negative X and Y to go left or up. In my case, I created a function to help out:

From here, the draw block is straight forward. Clear the background, move the ball
(add the speedX and speedY to the position variables), and draw the ball. If it’s off
the edge of the screen, then start again at the mouse and generate a new random
speed and direction. Here is my whole program:

float randomInRange(float min, float max)
{
 float range = max-min;
 float r = random(range);
 return r + min;
}
void setup()
{
 size(500, 500);
 ballX = width/2;
 ballY = height/2;
 ballSpeedX = randomInRange(-MAX_SPEED, MAX_SPEED);
 ballSpeedY = randomInRange(-MAX_SPEED, MAX_SPEED);
}

final float MAX_SPEED = 5;
float ballX;
float ballY;
float ballSpeedX;
float ballSpeedY;

Page 297 of 412 jimyoung.ca/learnToProgram © James Young, 2016

This is interesting, but wouldn’t it look cool if we had more particles? Let’s try to

float randomInRange(float min, float max)
{
 float range = max-min;
 float r = random(range);
 return r + min;
}

void setup()
{
 size(500, 500);
 ballX = width/2;
 ballY = height/2;
 ballSpeedX = randomInRange(-MAX_SPEED, MAX_SPEED);
 ballSpeedY = randomInRange(-MAX_SPEED, MAX_SPEED);
}

void draw()
{
 background(0);
 if (ballY < 0 || ballY > height ||
 ballX < 0 || ballX > width)
 {
 // move the ball to the mouse
 ballX = mouseX;
 ballY = mouseY;

 ballSpeedX = randomInRange(-MAX_SPEED, MAX_SPEED);
 ballSpeedY = randomInRange(-MAX_SPEED, MAX_SPEED);
 }

 ballX += ballSpeedX;
 ballY += ballSpeedY;

 stroke(255);
 point(ballX, ballY);
}

Page 298 of 412 jimyoung.ca/learnToProgram © James Young, 2016

update the program to three particles. To do this, we need to keep track of the
positions and speeds of EACH particle. So, we need a bunch of new variables. I
renamed my existing variables with a number for clarity:

Following, we need to repeat all the logic in the draw and setup blocks for the 2nd
and third ball. We can cleverly use some functions to simplify this a little. However,
there is only a limit to this, and it is very clunky. Try it on your own to really get a
sense of this problem.

What if we wanted to have 100 particles? 1000? This quickly becomes crazy. Clearly
there must be a better way – arrays! We will come back to this example later. For
now, let’s learn the fundamentals of arrays.

 What is an array
An array is an ordered list of data of a given type. In English, that means a
collection of a bunch of variables of the same type, where the collection is ordered.
For example, you can have an array of 100 integers, an array of 10,000 strings, an
array of 5 characters, and so on. In each case, you should imagine these collections
as big lines of data, with one variable after another.

The power of arrays is that you can easily wrangle (create and use) large numbers
of variables. Up until now, if you wanted 10,000 variables, you would need to type
every one in and give every one a name. Using arrays, you can create 10,000
variables as easily as you can create 10!

We have actually seen an array before. When we learned strings, we learned that,
under the hood, it just is a bunch of characters. At the core, a string is an array of
characters. As shown in the diagram, the String "SPROCKET" is actually made up

float ballX1;
float ballY1;
float ballSpeedX1;
float ballSpeedY1;

float ballX2;
float ballY2;
float ballSpeedX2;
float ballSpeedY2;

float ballX3;
float ballY3;
float ballSpeedX3;
float ballSpeedY3;

Page 299 of 412 jimyoung.ca/learnToProgram © James Young, 2016

of 8 characters lined up in a row. This is an ordered list of data as we talked about
above.

When we learned this in the strings module, we actually already learned a lot about
arrays. They have a given length. Each bin in the array has a designated number
called an index, and the numbering starts at 0. In this case, it is an array of
characters of size 8.

Unlike strings, with general arrays we are not limited to characters, or, working with
arrays through an interface like the String type. We can make arrays of any type,
and, can work with them directly.

An array of four integers may look like
the image here. As with strings, again,
each box has its own unique number.
The integers are all lined up. The first
index is 0.

While arrays are great and quite
flexible, there are some important key
limitations:

Arrays are fixed length: Once an array is created, the length is fixed. When you
create an array you decide how big it should be. This cannot change no matter what!
BUT – what if you need an array to shrink or grow? This is a classic final exam
question. There is only one way. Make a new array, and copy your data from the old
one into the new one.

Arrays are homogenous: Every bin in an array is the same type. If you have an
array of integers, every bin in the array
stores an integer. You cannot have an
array like in the inset. You have to
choose the array type when you are
creating it, and it cannot change.

Arrays are homogenous, ordered, lists
of data of a single type. Let’s learn
how to make them.

char char char char char char char char

S P R O C K E T

0 1 2 3 4 5 6 7

int int int int

22 -1 89 0

 0 1 2 3

int char float int

22 ‘c’ 2.1 42

 0 1 2 3

Page 300 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Creating Arrays
Arrays work differently from anything else we learned in the course so far, and this
comes up in many places. This is one of them. Unlike other variables, which only
have one step, creating an array has two steps:

 Declaration: Declare the array variable container (as with other variables)
 Instantiation: Create the array (allocate memory) and assign it to the container.

Here is the syntax. To declare an array:

You use the square brackets [] after a type to tell Processing that this is an array
variable. For example:

Declare:

IMPORTANT. Array variables do not store the actual array (more on this below). It
just remembers where in the computer memory the array is stored. As such, you do
not specify the array size when you create the variable.

Once the array is declared, you need to instantiate it. This reserves the computer
memory for all those bins you want.

Instantiate:

variableName must already be declared, as in the previous step. You create a new
array using the new keyword, and tell it the type and size. Once the new array is
created, the variable stores where in computer memory the array is. At this point,
this may seem like too much information, but this computer-memory approach helps
to explain and understand a lot of array quirks.

Here is another example:

Of course, just like with other variables, you can combine the declaration and

type[] variableName; // type is any Processing type.

float[] studentScores;
String[] studentNames;

variableName = new type[arraySize];

double[] studentScores;
studentScores = new double[30]; // 30 students in class

Page 301 of 412 jimyoung.ca/learnToProgram © James Young, 2016

instantiation into one command:

Remember, once the array is instantiated, the size cannot be changed!!

Here are some more examples of valid array declarations and instantiations. Any
valid Processing type can be used. Be sure that the type of the variable (declaration,
on the left) matches the type of the array (instantiation, on the right), or it will not
work.

remember: you must declare and instantiate or you cannot use the array.

Although we haven’t yet seen how to use arrays, now is a good time to highlight the
power of the above examples. In each case, we are creating a large number of
variables (5000, 200, and 100) without a lot of typing.

Finally, what is the maximum size of an array? This depends on the language. In
Java, it’s the maximum integer value, around 2 billion. In practical use, however, you
won’t use arrays this large. For bigger data sets you will use other techniques.

 Using Arrays
So now we can create an array of any type and any size, but how can we actually
use it in our code?

You can access any bin in the array just by using the array variable name, and putting
the bin number in brackets:

In this case, the result is that you have a variable that matches the array type.

For example:

int[] studentAges = new int[30]; // declare and instantiate

double[] gameScores = new double[5000];
String[] blogComments = new String[200];
long[] bigNumbers = new long[100];

arrayVariable[binNumber]

int[] numbers = new int[10]; // array of 10 ints
numbers[0]  first int in the array
numbers[5]  sixth int in the array
numbers[9]  last int in the array
numbers[10]  ?? error

Page 302 of 412 jimyoung.ca/learnToProgram © James Young, 2016

That last line will raise an error: Index out of bounds. The bin doesn’t exist. This is
the famous off-by-one error we have been seeing all course, so be careful!

Using the above syntax, you can now use the variable just like any other. For
example, to store values in the array, you use the array variable and bin combination
just like any other variable:

Since this is an array of integers, you can store any valid int in the array bins.

Likewise, we can retrieve the values from the array bins just like any other variable:

You can use this array variable – with the bin number in brackets – anywhere that a
normal variable can be used.

When accessing the array bins, you can give any integer as the bin number. This
could be a variable, a literal, even a calculation as long as it results in an integer. For
example, this is valid:

but it does not make sense to use non-integers:

So now you have the tools to make large collections of variables, and to use them.
It may not be obvious how all this fits together, so
let’s work through some examples.

 Example: first arrays
Make an array of integers, size three, and put three
numbers in it. Put the numbers 10, 40, and 5, so that
the array looks like this:

Now, make an array of three strings and put three

variableName[bin] = value
numbers[3] = 10;
numbers[0] = -1000;

int i = numbers[4];
if (numbers[1] < 100) { …

int i = 5;
values[i] to access bin i

values[5.5]  doesn’t make sense
values["yo!"]  doesn’t make sense
values[false]  doesn’t make sense

int int int

 10 40 5

 0 1 2

Page 303 of 412 jimyoung.ca/learnToProgram © James Young, 2016

messages into it: "woah!", "hey there", "nice day".

Here is my code for this so far. First I create the variables and declare the arrays.
Then, I store the data into the arrays.

Use the integer array to set font sizes for the three messages, and draw it to screen.

Since the text is all different sizes, it’s a little tricky to draw them to not overlap. My
technique is to remember the line position (y), and before drawing the text, add the
text size. This way, you move DOWN by the text size, and it draws UP from the
position, into the space you just filled:

By using arrays, we were able to greatly simplify the variable creation process.
Instead of copy-pasting to create three variables, we just created them once.
However, we still copy-pasted the code to use the variables. If this example had 100
items, it would be a lot bulkier. Let’s learn how to use for loops to simplify this.

final int COUNT = 3;
int[] sizes = new int[COUNT];
String[] messages = new String[COUNT];

sizes[0] = 10;
sizes[1] = 40;
sizes[2] = 5;

messages[0] = "woah!";
messages[1] = "hey there";
messages[2] = "nice day";

int y = height/2;
y += sizes[0];
textSize(sizes[0]);
text(messages[0], 0, y);

y += sizes[1];
textSize(sizes[1]);
text(messages[1], 0, y);

y += sizes[2];
textSize(sizes[2]);
text(messages[2], 0, y);

Page 304 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Iterating Through Arrays
We can solve the above problem quite simply. Since the array index – the bin number
– is an integer, we can use a variable there. Since we can use a variable, we can
use a for loop to iterate through that variable! Piecing it all together, we can use a
for loop to go through the bins to simplify the above code.

Notice how the code to actually draw the messages on the screen was identical, with
the only change being the bin number used in the array? So, the above three drawing
commands are equivalent to the following:

The for loop goes through 0, 1, 2, giving us the same output
result as earlier.

The real power of arrays is in how nicely they scale up. In this
case, let’s add two more lines. To do this, all that we need to
do is

 Make the arrays bigger
 Store more data in the arrays

Try it out yourself. The for loop does not need to change, only
the arrays.

 Example: random points
Let’s work through an example to illustrate the power of arrays. This program will
generate 8 random points around the screen on startup. Then it will draw lines from
those points to the mouse each frame. This will look like the points are stuck but the
mouse can move. Finally, if the mouse button is pressed, generate a new set of
random points.

First, let’s create our arrays as globals. We should use a final int to determine
the size of the array, and make an array for the x coordinates, and another array for
the y coordinates. These need to be global so that they persist and do not get erased
each time we draw:

int y = height/2;
for (int i = 0; i < COUNT; i++)
{
 y += sizes[i];
 textSize(sizes[i]);
 text(messages[i], 0, y);
}

Page 305 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Now, we will need to generate random points on startup, AND, if the mouse is clicked.
Instead of writing this code in two places, let’s make a function to do it for us. This
function should use a for loop to go through all the bins of the x and y arrays. Then,
at each bin, store a random number. For x, we want this number to be within the
range 0<=x<width, and for y, we want 0<=y=height.

This code goes through all the bin numbers from 0 to POINTS-1, and creates a
random x and y for those bins. Each bin gets a new random number.

Call this function in the startup code for the initial setup. And, in draw, use an if
statement to check if the mouse is pressed, and if so, call this again.

Similarly, instead of putting all your drawing code into the draw block, make a new
function called drawLines.

The code here goes through all bin numbers 0<=i<POINTS, then draws a line from
the mouse to that line.

Finally, the draw is simple. We clear the background, set the stroke, check the mouse
pressed (and get new points if needed), and draw the lines:

final int POINTS = 8;
final int[] x = new int[POINTS];
final int[] y = new int[POINTS];

void newPoints()
{
 for (int i = 0; i < POINTS; i++)
 {
 x[i] = (int)random(width);
 y[i] = (int)random(height);
 }
}

void drawLines()
{
 for (int i = 0; i < POINTS; i++)
 {
 line(mouseX, mouseY, x[i], y[i]);
 }
}

Page 306 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Run the program and you can see that we have 8 random points that the mouse
draws lines to. Without arrays, imagine all the work this would have taken! We would
have needed a lot more variables, and we wouldn’t have been able to use the for
loops for creating the random points and drawing the lines.

Now, scale the example up to 80 points. All that you need to do for this to happen, is
to change the POINTS global, and everything else works!! Easy! 8 points is the same
programming work as 80! Or 800!

 Example: mouse explosion
Remember the example at the beginning of the unit? The one with a point shooting
out from the mouse at a random speed and direction? Go back and type that up
again – we’re going to make it awesome.

So, let’s see if we can modify the example to use arrays. First, let’s make a global
variable to tell us how many balls we need. For now, just set it to 10. Next, upgrade
those floats for the ball position and speeds to arrays, since we will need a unique
position and speed per ball!

This is what I have:

This now gives us 10 sets of variables, enough for 10 balls. Previously we only had
one.

Now the program won’t work, because we were using our variables, ballX, ballY,
ballSpeedX, ballSpeedY, as floats, and now they are arrays.

The solution to this is that, each time we would do something to one of these

void draw()
{
 background(0);
 stroke(255);
 if (mousePressed)
 newPoints();
 drawLines();
}

final int BALLS = 10;
float[] ballX = new float[BALLS];
float[] ballY = new float[BALLS];
float[] ballSpeedX = new float[BALLS];
float[] ballSpeedY = new float[BALLS];

Page 307 of 412 jimyoung.ca/learnToProgram © James Young, 2016

variables, we need to upgrade to using arrays. Previously we would do something
to one variable (e.g., add movement speed to position), but now we need to do the
same work for every bin in the array. This means that we need to use for loops.

At the setup, we placed the original ball at the screen center. So, let’s place all the
balls there. Also, we set a random speed to the ball, so we need a new random
speed for each ball as well. Wrap the existing startup code in a for loop, and update
the variables to use the array, such that you do the same operation for all bins in the
array:

Similarly, in the draw block we need to repeat all the logic for each ball. We need to
check each ball if it’s outside the screen, and if so, move it to the mouse. We need
to move each ball by adding the speed variables to its location. We need to draw
each ball.

Again, wrap the existing code in a for loop to save a lot of work instead of treating
each ball individually. Make sure to update each call to the old variable with the new
array and bin number.

for (int i = 0; i < BALLS; i++)
{
 ballX[i] = width/2;
 ballY[i] = height/2;
 ballSpeedX[i] = randomInRange(-MAX_SPEED, MAX_SPEED);
 ballSpeedY[i] = randomInRange(-MAX_SPEED, MAX_SPEED);
}

for (int i = 0; i < BALLS; i++)
 {
 if (ballY[i] < 0 || ballY[i] > height ||
 ballX[i] < 0 || ballX[i] > width)
 {
 // move the ball to the mouse
 ballX[i] = mouseX;
 ballY[i] = mouseY;

 ballSpeedX[i] = randomInRange(-MAX_SPEED, MAX_SPEED);
 ballSpeedY[i] = randomInRange(-MAX_SPEED, MAX_SPEED);
 }

 ballX[i] += ballSpeedX[i];
 ballY[i] += ballSpeedY[i];

Page 308 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Cool! It should work now. Try scaling up to 100, or even 1000 balls! To do this you
only need to change one number.

 Array length
When you create an array, you determine its length. That length is fixed and can
never change. Also, knowing that length is useful, for example, when we use a for
loop to go through an array.

So far, we use a named constant (a final) to set the size of the array, and use that
same constant to determine how many bins are in the array. Sometimes, it’s not so
simple to keep track of how big an array is, or which global refers to which array.
This is dangerous, because if you go off the end of an array – try to access a bin but
the array is too small for that bin – your program crashes.

Processing provides a simple mechanism to get the length of an array. If we
have an array variable, we can get the length with:

For example:

The output is 100, which is the number of bins in the array. As such, the last bin in
an array is always .length-1. (remember! 0 based counting!).

This looks very similar to how we get the length of strings, but there is a very
important difference.

For Strings:

And, for arrays

 stroke(255);
 point(ballX[i], ballY[i]);
 }

variableName.length

int numbers[] = new int[100];
println(numbers.length);

String s = "Eric the Fruit Bat";
println(s.length());

int[] numbers = new int[100];
println(numbers.length);

Page 309 of 412 jimyoung.ca/learnToProgram © James Young, 2016

They look similar but there is a huge difference. Can you spot it?

When you ask a string for its length, you need to put brackets at the end of the
length(). For arrays, you don’t use the brackets: .length. This is really annoying,
and stems from the fact that strings are Objects and use object-oriented
programming. Arrays are built directly into the language and are not objects.
Unfortunately, we don’t learn much more about this until a later course.

This difference is very confusing and probably makes little sense at this point.
Unfortunately, you just need to memorize this. Arrays, .length. Strings, .length().

Even when you know the named constant for the length of an array, you are safer
using the array length. This is bullet proof, and even if something shifted or there is
a mistake, .length always gives you the correct array size.

 Example: make it rain!!!
Let’s make it rain!

Make an array where each bin
represents a rain drop. The bin number
can be the x coordinate of the rain drop
(so they are in every column), and we
can store a random y value in the bin so
that they are at random heights.

If we have more rain drops than x
coordinates, use modulo to make it wrap
around. For example, given a canvas
size of 500, bin 500 is a rain drop also in
the left-most column, since 500%500 is
0.

A quirk of this example is that we will generate a random number of dots in the startup.
This means that we can’t rely on a hard-coded final constant for the array size. It
also means that we have to separate the array initialization and declaration.

We need to use the array throughout the program, and it cannot lose its data every
time we draw, so the variable needs to be global. However, we don’t initialize it to
create a new array until the startup. Let’s make the global variables. In this example
we also use lines for rain (for artistic effect) so let’s define the line length as well

In the startup, let’s instantiate our array and actually make some dots.

final int DROP_Y_LEN = 10;
int drops[];

Page 310 of 412 jimyoung.ca/learnToProgram © James Young, 2016

To generate a random number, let’s be sure that we have at least one per column
(width). Then, add a random amount, up to some maximum. I used a global for this
and set the global to 10,000. Use this calculated number to create your array. NOTE:
Make sure that you make it an int, since you need to use an int to set the
array size.

Now, use a for loop to set each drop’s y value to a random position. This is a great
place to try out the new .length. Be careful, you want a new random position for
each dot. If you do this wrong, each dot will have the same y coordinate.

OK, we are all initialized.

The draw loop is actually pretty simple. We clear the background, and then use a
for loop to go through each bin in the array. Since the size of the array was only
stored in a local variable in startup, we no longer have access to that! We must rely
on the .length property.

Calculate the x coordinate of the drop (x mod width – if it’s bigger than width, just
wrap around). The y coordinate is just the data in the bin. Use the drop line height
to draw your rain drops:

All that is left is to animate them. A simple way is to simply add some value to the y
coordinate (i.e., actually modify the bins of the array) each time. Use modulo to wrap
around if it goes off the edge of the screen. Get this working before moving forward.

I think it’s more fun, though, if the drops fall at different speeds. A simple trick we can
do is to make there appear to be layers. What if the 0th, 3rd, 6th, 9th, etc., and so on

int count = (int)random(MAX_ADDITIONAL_DROPS)+500;
drops = new int[count];

for (int i = 0; i < drops.length; i++)
{
 drops[i] = (int)random(height);
}

for (int i = 0; i<drops.length; i++)
 {
 int x = i;
 int y = drops[i];
 stroke(random(256));
 line(x,y,x,y+DROP_Y_LEN);
}

Page 311 of 412 jimyoung.ca/learnToProgram © James Young, 2016

moved at one speed, the 1st, 4th, 7th, 10th, etc., at another, and so on? We can do
this with the following formula. Try to figure it out as an exercise

Now that you’re done, try to spice it up. What about color? Before each line, try this

 Array Initialization with Literals
Often times, as we have done, you want to pre-load an array with values. For
example, we could use an array of strings to store the days of the week for the
header of a calendar.

This is very useful, as now we can use this to draw the header of a calendar like we
did in an earlier unit.

Go back and take a look (Section 13.2) at the code, type it up, we’ll work on it. Of
particular interest is the following ugly code:

drops[i]=(drops[i]+i%3+1)%height;

stroke(random(256),0,random(256));

String[] days = new String[7];
days[0] = "S";
days[1] = "M";
days[2] = "T";
days[3] = "W";
days[4] = "R";
days[5] = "F";
days[6] = "S";

// draw title bar
 int bottom = CAL_TOP+CAL_SPACE;
 int left = CAL_LEFT;
 text("S", left, bottom);
 left += CAL_SPACE;
 text("M", left, bottom);
 left += CAL_SPACE;
 text("T", left, bottom);
 left += CAL_SPACE;
 text("W", left, bottom);
 left += CAL_SPACE;
 text("R", left, bottom);

Page 312 of 412 jimyoung.ca/learnToProgram © James Young, 2016

We use a variable, left, to remember the leftmost spot for the letter. We draw a letter,
then move the variable along.

Now that we have an array of days, we can replace all the above code with a simple
for loop to get the equivalent output:

Which is much nicer! However, we still have that bulky mess when we created the
array – we had to set every bin individually.

When we create an array and want to store data into it right away, we can do
what is called a literal initialization of an array. This is a shortcut that

 Creates a new array in memory. We don’t need the new command.
 Populates the array with the data we want. We don’t need to set every bin

individually.

There is special syntax for this, and it looks like the following:

You just use the squiggly brackets { and }, and put your data in a list, separated by
commas. In our above example, we can simply make our days array as follows:

Processing automatically detects the length, allocates the memory for you, puts the
data in the memory, and stores that memory address in days. All in one statement.

For example, what if I were to ask you to draw lines between the following sets of
x,y points?

 left += CAL_SPACE;
 text("F", left, bottom);
 left += CAL_SPACE;
 text("S", left, bottom);
 left += CAL_SPACE;

int bottom = CAL_TOP+CAL_SPACE;
int left = CAL_LEFT;
for (int i = 0; i < days.length; i++)
{
 text(days[i], left, bottom);
 left += CAL_SPACE;
}

type[] variable = {element, element, element, …};

String[] days = {"S", "M", "T", "W", "R", "F", "S"};

Page 313 of 412 jimyoung.ca/learnToProgram © James Young, 2016

(100, 40) -> (140, 160) -> (40, 80) -> (160, 80) -> (60, 160)
-> first point

Previously you had to hard code this in a bunch of line statements. With arrays,
maybe you could put them into arrays, and use a for loop to draw it. Previously,
setting up the arrays would hardly be worth the effort. But with literal initialization,
this gets much easier.

Let’s make two arrays and initialize them with literals with the above numbers:

Now, we can draw them simply with a for loop. Let’s go through all the bins, and
draw a point from the current bin to the next one. We can use modulo to wrap around,
so that when we go off the right edge of the array it goes back to zero:

What was the output?

 Check Your Understanding: Exercises

 Create an array of floats with ten thousand bins, and practice both
putting and retrieving data into and from the array.

a. Create the array with 10,000 bins.
b. Store the number 9999 in bins 0, 1, and the last bin.
c. Use println to print out the data in bins 0, 1, and the last bin

 Generate 500 random points (use two array variables, one for x and
one for y), and draw them. Generate the points once, in the setup, and draw them
each block.

a. Make the points move slowly to the right
b. Draw a line through the points, that is, from point 0 to 1, 1 to 2, etc.

int[] xPoints = {100, 140, 40, 160, 60};
int[] yPoints = {40, 160, 80, 80, 160};

for (int i = 0; i < xPoints.length; i++)
 {
 int next = (i+1)%xPoints.length;
 line(xPoints[i], yPoints[i], xPoints[next],
 yPoints[next]);
 }

Check your Understanding

CuSn

CuSn

Page 314 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Make a program to plot the following points on a 500x500 canvas.
Note: use literal array initialization and for loops.

(150, 120), (158, 149), (166, 174), (175, 195), (183, 211),
(191, 224), (200, 233), (208, 240), (216, 245), (225, 247),
(233, 249), (241, 249), (250, 250), (258, 250), (266, 250),
(275, 252), (283, 254), (291, 259), (300, 266), (308, 275),
(316, 288), (325, 304), (333, 325), (341, 350), (350, 380)

 Update example 16.7 to draw a
best-fit box around all the points, as shown
here. This takes a little bit of work. The way to
do this, is to find the smallest x and the smallest
y in both the x and the y arrays, and then the
largest x and y. Then, draw a box from the
smallestX,smallestY to the
largestX,largestY, and you have the box.
How can you find the smallest and largest
elements in an array? You need to do it
manually, using for loops.

 Update example 16.8, the one with the points exploding from the
mouse. Currently, the particles fire off randomly in any
direction. Add gravity so that the balls fall toward the
bottom of the screen, so that it looks like a fountain.
Instead of thinking about gravity moving stuff (gravity
doesn’t move things, it accelerates them!), think about
gravity accelerating things toward the ground. Therefore,
each frame, you should add an amount of gravity to the
ball’s Y speed, not the position. Since gravity is 9.2m/s2,
and we have 60 frames a second, you should add
9.2m/s2 * 1s/60f = 0.153m/f. Let’s assume 1 pixel
is 1 meter , so you need to add 0.153 each frame
to the speed.

In this exercise, you will animate the Big Bang at the
start of the Universe! Draw a lot of “stars” (just single
white pixels against a black background). Try 2500 stars
to start with (but make that a named constant, of
course). All the stars will start at exactly the same point
(the center of the canvas – clearly the center of the
universe), then they will “explode” outward, each with its

1 metre per pixel! Wow
I wish my monitor was
that big.

CuSn

CuSn

CuSn

Page 315 of 412 jimyoung.ca/learnToProgram © James Young, 2016

own random speed and direction.

For each star, you will need to know:

 Its current location (both X and Y)
 Its speed and direction of motion, which should be stored as separate X and

Y motions (the change in X and change in Y to use each frame).

Since you have many stars, you will need to use arrays, and since you need to
remember the location between frames, use global variables.

In the setup function, initialize all of the elements in all four arrays. The positions
are easy: every star should start at the center of the canvas. For the velocity of
each star, generate a random angle theta (between 0 and 2*PI), and a random
speed (from 0 to some maximum speed – try 3.0, and of course use a named
constant for this). Split the speed into separate x and y velocities by multiplying
the speed by sin(theta) and cos(theta), in the usual way. Note: It’s a
mistake to try to avoid sin/cos by generating separate random numbers for the
x and y velocities. Do you see why? Try it! You get a rather strange universe that
way.

In draw, draw each star as a point, and then move it to the next position by adding
its velocities to its position. For an even better effect, give each star a different
color. Add some randomness each time you draw a star so that they’ll “twinkle”.

Boom!

a. For the ultimate effect, use the perspective technique from the exercise in unit
14 to make the explosion 3D! Generate (x,y,z) locations, use velocities in
a random 3D direction, and apply perspective.

 Update example 16.10 to make the rain go in an angle. Make it both
draw the line in an angle, and, move in an angle. This is a little tricky, but the
array component should be easy.

 In the real-life Lotto 6/49, as of Nov.
16, 2015, a total of 19,920 numbers between 1
and 49 have been generated, in 3,320 draws
held since 1982(**) (not including the “bonus”
numbers). The top histogram(*) (bar graph) on
the right shows how many times each of the 49
numbers have been drawn. The number 28 was
drawn only 378 times, but the number 31 was
drawn 450 times. Does this mean that the game
isn’t random? That 28 is unlucky? That 31 is
lucky? Let’s run a simulation and compare it to

Ag

Ag

Ag

Page 316 of 412 jimyoung.ca/learnToProgram © James Young, 2016

real life.

The program will generate NUM_DATA_ITEMS (say, 500) random numbers
between 1 and MAX_NUMBER (49). Then it will count how many times each
possible number was generated (the number’s frequency). Finally, it will display a
very simple histogram showing the results, as shown at right. The bottom
histogram shows one possible result when only 500 numbers were generated. It
looks a lot more “random” doesn’t it? You’ll get a different result every time.

Complete a void generateData() function. It
should create an array of NUM_DATA_ITEMS
integers, each from 1 to MAX_NUMBER (note: 1
not 0!) and store it in the global variable
theData.

Complete a void findFrequency() function.
It should create an array of MAX_NUMBER
integers and store it in the global variable
frequency. It should count the number of times
that each integer x occurs in theData, and store
that count in frequency[x-1]. (The -1 is
because the lowest number is 1, not 0.)

Finally, complete a function plotHistogram() which will draw a histogram of
the data in the frequency array. It will first need to scan through that array and find
the maximum value that appears. The bar for that element should be the full height
of the canvas, and all other numbers should be scaled accordingly. The full width
of the canvas should be divided into MAX_NUMBER bars. The bottom of all of them
should be at the bottom of the canvas.

Just for fun: Change NUM_DATA_ITEMS to 19920 and try it again. How do your
results compare to the real Lotto 6/49 results? Are the real Lotto 6/49 numbers
similar to your “random” ones? Do you think the game is really random?

(*) For a discussion of Histograms, see the Wikipedia page at
en.wikipedia.org/wiki/Histogram

(**) The Lotto 6/49 data comes from
www.lotto649stats.com/position_frequency.html

 This question will use the perspective
technique introduced in Unit 14 exercises, using
perspective to simulate a 3D image. This time, you’ll
draw a field of “stars” (single pixels), and make them
fly toward you, or away from you, by changing their
z coordinate. (Remember, the z coordinate controls

Au

Page 317 of 412 jimyoung.ca/learnToProgram © James Young, 2016

how far “away” or “into the screen” an object is.) The mouse will be the control for
your spaceship – when mouseX is in the center of the canvas, the spaceship will
be stopped, and the stars won’t move. Moving the mouse to the right will make
the stars move toward you (as if you were flying forward through space), and
moving the mouse to the left will make the stars move away from you.

Use three float[] array variables, starX, starY, and starZ to hold the
positions in 3D space of STAR_COUNT stars. The star with index i will have a
virtual 3D position in space of (starX[i], starY[i], starZ[i]).

Write a function void generateStar(int i) which will create a random star
and store its 3D location in the global variables starX[i], starY[i],
starZ[i]. The stars should start with x and y coordinates from –width/2 to
+width/2 and –height/2 to +height/2, respectively. (These are virtual
coordinates, not canvas coordinates, and the virtual (x,y) point (0,0) – the
“vanishing point” – will be in the center of the canvas. That’s where the stars
should come from, or go to.) The z coordinate should be between 0 and MAX_Z –
a predefined constant giving the maximum possible z coordinate for visible stars.

Complete the setup function by creating the three arrays needed, and filling them
with random star positions, using the generateStar function.

Create a void drawProjectedPixel(float x, float y, float z)
function (modify from the Unit 14 example) to project and draw the point. As we
want to make stars with large z coordinates look far away, use the z coordinate
to control the color (“brightness”) of the star. Stars at z=0 should be white, and
stars at MAX_Z should be black, with all others at an intermediate shade of gray.

Complete draw to animate moving through a field of stars. Each frame, use
drawProjectedPixel to draw all of the stars against a black background. Move
every star by changing its z coordinate (x and y never change). All stars should
change z by the same value from -MAX_SPEED (when the mouse is on the far
right) to +MAX_SPEED (when the mouse is on the far left). Use an int not a float
for the speed, so that it will be easier to make it 0 and stop the spaceship. Finally,
regenerate the stars so that you never run out of them. When any star gets too
close to draw (z≤0) or too far away to see (z>MAX_Z), use generateStar to
create a new one to take its place.

a. Yes, a double gold exercise! Modify the star field so that you can rotate it
in an arbitrary fashion, using the technique shown in Unit 14 exercises. The
challenge here is how and when to apply the rotation. Hint: the star
coordinates themselves should NEVER change, only when you project do
you rotate.

Au

Page 318 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

