

Page 57 of 412 © James Young, 2015

 CODING STYLE AND STANDARDS

Summary
In this section, you will…

 Learn about the importance of coding style and standards
 See how Processing provides some mechanisms to help you
 Get exposed to one reasonable style

Learning Objectives
After finishing this unit, you will be able to …

 Choose meaningful variable names that make your code more readable.
 Create named constants that cannot change once set, as a safety feature.

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 58 of 412 © James Young, 2015

 Introduction
Much of computer programming involves writing computer programs to get work
done – to make the computer do what you want it to do. However, as you will soon
learn as your assignments get harder, most of your time is actually spent re-reading,
editing, and debugging your code: removing errors and problems that stop
your program from working as you expect it should. In fact, in professional
programming much more time is spent modifying and debugging code than is spent
writing it. By the end of this course, you will already be at that level. In addition, a
great deal of the energy of professional programmers is spent on reading each
other’s code. You will find yourself increasingly reading your own code from some
time ago.

All of these things point to the importance of having clear computer code that is easy
to understand and read. Coding style and standards are developed precisely for this
reason. While it may seem that this is about making code readable by others – and
therefore does not pertain to this class – at your current level, coding style and
standards are very important to help you be more efficient. If your code is easy to
read and understand then you are more likely to see problems, and, you have more
brain power left for thinking of other potential problems.

By far, the most common problem I see from students in my office hours in this
course, is that there is a difference between what the student thinks their code says,
and what it actually says. My usual strategy is to simply logically go through the code
with the student, at which point the student notices the problem and can fix it: I do
nothing but to read out what is on the screen. The code style and standards
introduced in this course are carefully chosen to help avoid these problems, and help
you, the students, be more effective and efficient.

This is a very short unit with only a little bit of information given. However, as new
techniques arise coding style and standards will continue to pop up.

We have already learned some ways to make our code more readable. We use
comments when possible to add additional explanations. We use indentation
properly to help your eyes line up the code blocks and to easily know where they
start and end. We have also been trying to use good variable names, but I will talk a
little more about that.

 Meaningful Variable Names
One of the most common issue for new programmers is the use of terrible variable
names. For example,

We do use some variable names that are single letter, but this is only acceptable

int a; // bad, no meaning
int a2; // even worse!

Page 59 of 412 © James Young, 2015

because it is standardized and actually comes from math. For example, i, j, and k
are common iterators for indices, and x,y,z are common for coordinates. Only use
single-letter variable names when it is very clear from the context what it means, e.g.,
when implementing a math formula.

Good variable names describe your code and what is happening, and results in you
requiring less commenting. For example, I often see cases like:

This forces the programmer to memorize what p1S and p2S mean, and they may
have to look back at the comment several times as they work through the code.
Instead, the comments and the issue can be easily avoided completely by just
choosing good variable names.

Sometimes, variable names have to follow standards. Many companies or software
projects provide you with their variable naming scheme and you need to follow it so
that everyone is using the same system. For example, some places start short-term
variables with an underscore (e.g., int _data). In this class we do not enforce any
particular variable naming scheme, but you must use descriptive variable names –
use your common sense here, and err on the side of being too descriptive instead
of not descriptive enough. The examples used in class are about where you should
be aiming.

Also, you’ll notice that for my variable names I use a technique called camel case.
This is where the first word starts with a lower case, but the following words start
with upper case to make it easier to read, even though there are no spaces.
thisIsCamelCase. This is called camel case because you can imagine a camel
from the side view with its head down (the first letter), and the bumps on its back
being the capitals.

Let’s do another example. Look at the following example code. What does the
calculation mean? Clearly we are multiplying numbers, but what numbers, and what
does the result tell us?

int p1S; // player 1 score
int p2S; // player 2 score

int player1Score;
int player2Score;

int resultA = 100*5*26
int resultB = 52*5*26;
int resultC = 88*5*26;

Page 60 of 412 © James Young, 2015

What does this mean? What purpose does this serve? Well, in this case it is a
summer cottage industry calculating seasonal costs. The first result is hydro costs,
the second is maintenance costs, and he third is firewood costs. If we choose better
variable names it is a little easier to parse:

Now the variables are self-commenting as in our example above. However, those
other numbers are still confusing. What do they mean?

Some programmers call these confusing literals, these seemingly-random numbers
hanging in calculations, magic numbers. They are called magic numbers because it
looks like magic; we have no understanding of how it works or why it is there. I once
had a professor who would deduct 10% from my assignment for every magic number
found!

To improve this, and to avoid magic numbers, we should start using named constants.

 Named Constants
A named constant is a value or piece of information which we guarantee will
not change while the program is running, e.g. the length of a business season,
amount of sales tax, etc. For example, imagine that we re-write the above example
as follows:

Although this is more verbose, and requires a lot more typing, this is much easier to
read and understand. This is self-commenting code. Except for the remaining magic
numbers (100, 52, and 88), I do not need text or comments to explain the calculation.

Notice that the new variables are in ALL CAPS. We often use ALL_CAPS_WITH_
UNDERSCORES_FOR_SPACES when doing constant values, this is a naming
convention that is quite universal. That is, we only make the variables ALL_CAPS to
signal to the programmer that the variable is a constant one; it has no impact on how
the computer treats the code. Naming for constants is in contrast to regular changing
variables which we use camel case for as previously described.

In case you are slightly confused here, all of these variables would need to be
declared and set prior to using them, earlier in the program.

int hydroCost = 100*5*26
int maintCost = 52*5*26;
int woodCost = 88*5*26;

int hydroCost = 100*DAYS_PER_WEEK*WEEKS_PER_YEAR;
int maintCost = 52*DAYS_PER_WEEK*WEEKS_PER_YEAR;
int woodCost = 88*DAYS_PER_WEEK*WEEKS_PER_YEAR;

Page 61 of 412 © James Young, 2015

Just to re-cap: some variables here are ALL_CAPS to signify that it is a constant, it
will not change. This includes how many days are in a week, and how many days
are in a year. Other variables are using camelCase which signifies that they are
regular variables that can change, such as the amount of wood cost daily to provide
heat, which will change with the seasons.

Let’s compare this code to the original:

Although the new improved code is much longer, it is self-documenting – the
calculation is obvious.

Another important benefit of using named constants is that important numbers are
only maintained in one location. Let’s say the industry changed how many weeks
per year they were open. In this case, instead of hunting through the code to find
where that number is used (the number 26), and potentially changing other 26s as
well, we simply update the variable value. As long as that named constant is
changed, the calculation will be fixed wherever the variable is used. This avoids a
common bug where a programmer forgets to fix a few obscure instances, for
example.

Although we can signify named constants with our ALL_CAPS convention,
Processing actually has a mechanism for specifying named constants. This is
particularly useful as Processing will not let anyone change the constant, not even
by accident.

To create a named constant in Processing, you use the following syntax. This is
essentially the same as the regular syntax to create a variable, except we add the
final keyword.

For example:

// original code
int resultA = 100*5*26
int resultB = 52*5*26;
int resultC = 88*5*26;

// improved code
int hydroCost = 100*DAYS_PER_WEEK*WEEKS_PER_YEAR;
int maintCost = 52*DAYS_PER_WEEK*WEEKS_PER_YEAR;
int woodCost = 88*DAYS_PER_WEEK*WEEKS_PER_YEAR;

final type VARIABLE_NAME; // a named constant

Page 62 of 412 © James Young, 2015

Final variables can only be set once, and the can never change. This is to avoid
mistakes where you accidentally change something that is not meant to change.
Examine the following code:

final int WEEKS_PER_YEAR;
WEEKS_PER_YEAR = 26;
WEEKS_PER_YEAR = 0; //  illegal because already set

In this case, Processing will not yet you do the second assignment operation. Try it
out to see what happens.

You may be thinking that one good place to use named constants is to set your
canvas size. Then you can use the constant in the size command, and throughout
your program. Unfortunately, that doesn’t work in this case!! It is a great idea,
and should work this way. However, there is a quirk in how Processing converts your
program to data, which makes this not allowable. Sorry. To clarify, you cannot do
this:

The parameters to the size command unfortunately must be literal.

For Information Only (not testable): There is an additional advantage to using
constants. If you use a constant in a calculation, your computer will examine if it can
take short cuts. That is, it will see if it can calculate the result once, before the
program is even run. For example, in the above program, DAYS_PER_WEEK *
WEEKS_PER_YEAR is a constant calculation that the computer does not need to re-
calculate every time. For very advanced programs that use a lot of constants (like
video games), this savings can add up to be a significant optimization. Use named
constants whenever you can.

Note: for your assignments, you will be marked on your use of style and standards.
You need

 Reasonable variable names
 Consistent and good indentation
 Reasonable comments where needed (err on the side of too many)


final int WEEKS_PER_YEAR = 26;

final CANVAS_SIZE = 500;
size(CANVAS_SIZE, CANVAS_SIZE);

Page 63 of 412 © James Young, 2015

 Check Your Understanding: Exercises

 Choose better names for the following variables so that comments
are no longer needed:

// calculate the average age of my polo team
int a; // first player age
int b; // second player age
int c; // third player age
int d = (a+b+c)/3;

 This small piece of code is used by an air conditioning contractor to
calculate the volume of air in a rectangular house, to choose which unit to install.
In this case, the house is 10m by 30m, and there are three floors, each is 3m tall.
Create variables and named constants, and add comments, to make the code
more readable.

int volume = 10*30*3*3;

 The following code calculates the weight of a pack of pens. The size
of a pack of pens never changes – it always contains 10 pens. Also, the weight
is fixed. Update the following code to used named constants for both of these.
There is a catch, what is it? Type it in processing to see.

int pens = 10;
int penWeight_g = 10;
int totalWeight_g = pens * penWeight_g;
pens = pens - 1; // remove one from the box

 The following code is a very boring program – it takes some kind of

key number (in this case, 90210), and uses it to generate a unique scene. All the
quantities, the colors, and the size and location of the ellipse, are generated
based on this number. First, type the program into processing and get it working
(try your phone number!). Then, fix the program using comments, good variable
names, and named constants, to be more readable.

size(500,500);
int a = 90210;
int b = a%256;
int c = (a*13)%256;
int d = a%(500/2);
int e = a%500;

Check your Understanding

CuSn

Ag

Ag

Au

Page 64 of 412 © James Young, 2015

int f = (a*13)%500;
d = max(10, d);
e = max(0, e);
f = max(0, f);
background(b);
stroke(c);
fill(c);
ellipse(e, f, d, d);

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

