

Page 65 of 412 © James Young, 2015

 ACTIVE PROCESSING

Summary
This is a difficult unit – we finally move away from boring calculation programs and
start to have programs that animate and you can interact with. These are called
active programs in the Processing lingo. In this section, you will…

 Move away from static programs toward interactive, dynamic programs
 Learn about code blocks, logical units or groups of programming commands
 See how a variable, once created, only works in some parts of the program: it

has a scope within which it’s valid
 Learn how to get the mouse position
 Learn some new commands for finding out which of two numbers is larger or

smaller

Learning Objectives
After finishing this unit, you will be able to …

 Create an active program that can change while it is running
 Create animations where the drawing changes as time passes
 Use the mouse location as input into your program
 Calculate which of two numbers is larger or smaller

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 66 of 412 © James Young, 2015

 Introduction
So far, you have been using what processing calls static sketches – your programs
run straight through once and you see the final result. This is cool, but it’s time to
start doing something more exciting: active sketches!!!!

Active sketches start up, and then keep on running and running and running,
repeating the program and making changes, until you press stop. This is exciting as
it opens up a whole new world of programming, such as animations and programs
that act based on your mouse and keyboard actions. So far, you use Processing just
by typing commands in. To switch over to active mode, there are no settings in
Processing – instead, it’s how you write your program.

First, here is a magic line of computer code that draws a line from the center of the
screen to a random location. We don’t yet have all the tools necessary to properly
learn the random command, so for now, please be patient with just typing this in and
not fully understanding it. Assuming that our canvas is 500 by 500, here is a complete
program:

run this program, and you will see a random line from the center of the screen to
some spot. Run it again. And again... and you will get a different line each time. That
is each time random is called, it generates a random number for the line command
(in this case, from 0 to 499, excluding 500, but we’ll learn that in more detail later).
This illustrates the limitation of the static program – it only runs once. To move
forward, let’s learn about active sketches.

 Active Sketches
To move from static to active sketches, we just need to type in our program a little
differently. In an active sketch, you actually specify two chunks of computer code:
code that runs just one time at the start of your program, and code that gets repeated.
We call these two fundamental regions “blocks” of code. There is a setup region –
this is code that runs once at the beginning of your program. This is kind of like
the static programs you have been creating already. The second region is called a
draw region. This code gets run over and over and over again. In fact, since
computers are so fast, Processing tries to run it 60 times every
single second. You can change this speed, but that’s beyond the
scope of this course.

Active sketches require some new syntax. To mark off these
sections of your program – the run once setup code, and the
repeating draw code – you need to learn about code blocks.
Processing marks off a block of code by sandwiching it between

size(500,500);
line(250,250,random(500),random(500));

Zoom!! Almost as
fast as I can run!

Page 67 of 412 © James Young, 2015

two curly brackets: { and }. For example:

Be careful not to use the square brackets [] or the round ones () (and especially
not the triangle ones < >) as they mean different things in Processing.

Notice how I indented the code inside the block? This is a good practice to get into
as it makes your program easier to read. You’ll get a lot of practice with this,
especially as we start using blocks all over the place later on. Hint: The Processing
editor has a feature to automatically do your indenting. It is hidden in one of
the menus – can you find it?

You don’t usually create a code block just by itself, like in the above example, but it
gets attached to something. In this case, we need to give these code blocks names
so processing knows which one is which. We simply put the name in front with some
special syntax.

What exactly does this mean? For now, just memorize this syntax. The word void
means empty or nothing, meaning the block doesn’t generate any data for others to
use. The empty brackets () means that the block doesn’t require data when it is
started to get going. This is confusing, and you will learn more about it later in the
course.

Advanced: You have already seen many commands, like line, ellipse, etc., that
require parameters (data) to run, e.g., screen coordinates. When we create blocks,
they can likewise be configured to take data (we’ll learn much later in the course).
We haven’t yet seen any commands that give you data (except random, in passing),
but blocks can likewise return (result in, and pass along) data to be used elsewhere.
The syntax for creating a block in processing enables you to specify parameters and

{
 // this is a code block
}

void setup()
{
 // run once
}

void draw()
{
 // run 60 times every second
}

Page 68 of 412 © James Young, 2015

return data, even though we won’t be using it for a while. Here is the general syntax
for setting up a block, which we will learn later:

Our setup and draw blocks do not provide any results (like line!) and do not take
any parameters, so we can set them up with the void return type and no parameters.

Try typing the setup and draw code from the previous page into Processing and
make sure it runs. However, since there is no code inside the blocks, nothing should
happen but seeing an empty canvas. Make sure there are no errors.

So what exactly is happening here?

 1) Processing runs the setup block one time. This is exactly like your static
Processing programs you have been using throughout the course.

 2) Processing runs the draw block. It runs every command top to bottom.
 3) Processing waits until it’s time to draw again, and then runs the draw block

again. This repeats at about 60 times a second (60 Hertz) until you close the
program or until an error is encountered.

Advanced: Why does processing need to wait before drawing again? 60 frames per
second (FPS) may seem very fast, but from the perspective of a computer that
measures time in billionths of a second, the time between frames is very long. For
60 FPS, there is a delay of about 0.0166 seconds between drawing each frame. On
the billionths of a second time scale, that is equivalent to 16 million clock ticks, in
which time the computer can get a whole boatload of work done. So, it needs to wait
before drawing again, and will probably check your email, do some networking, etc.

Let’s rewrite our earlier random line example, from the beginning of the unit, in active
Processing. Let’s put everything into the run-once setup block.

resultType blockName(paramType1 paramName1, type2 name2,…)
{
 // block of code
}

void setup()
{
 size(500,500);
 line(250,250,random(500),random(500));
}
void draw()
{
}

Page 69 of 412 © James Young, 2015

This should run as expected. The setup code runs once only – this acts the same as
your static sketch did before. The repeating draw block is still empty.

Now, let’s see what happens if we move the line command into the draw block. Keep
the size command in the setup block because we only want it to run once, at the
start of the program.

Yay!! We now have an animated program. Let’s step through what is happening.

 1) Processing runs the setup block one time. The size command gets run and
we have a 500x500 canvas.

 2) Processing runs the draw block one time. A line is drawn from 250x250 to
some random location.

 3) Processing waits until it’s time to draw again.
 4) Processing runs the draw block again. A line is drawn from 250x250 to a new

random location. Repeat.

After just a few seconds, we see something like on
the right.

We can now put any code we want into the draw
block, and it will play over and over and over again.

NOTE: in active Processing, all commands
generally must go inside a block. The only
exception is creating variables, which we will get
to below.

 Variables and Blocks
Now that we have blocks, variables get a little more complicated – where do you
define them?

Let’s try the following example: what do you reasonably expect to happen?

void setup()
{
 size(500,500);
}
void draw()
{
 line(250,250,random(500),random(500));
}

Page 70 of 412 © James Young, 2015

Let’s step through this. The setup block is run one time, and the canvas size is set.
The draw block is run. The variable linePosition is created and set to 0. The
line is drawn from 250,0 to linePosition, linePosition which is 0x0.
linePosition is increased by 1. So far so good. Processing waits until it is time
to draw again, and then runs the draw block again. Next time, since we changed
linePosition, will it draw to 1,1? And then 2,2? Run it to see.

If you try this out, it doesn’t work – we only get a line from 250,0  0,0. Apparently,
the value in linePosition doesn’t increase as we expect. What the heck is going
on?

Variables and blocks have some very important properties. If you define a variable
inside a block, it only exists until the block is finished. You can do it, but once
the block is over, the variable actually gets destroyed. This is particularly
annoying for the draw block, since it runs 60 times a second. Any variable you create
in there gets destroyed and re-created EACH TIME, losing its data from before. So
each time through in our example, linePosition gets created, initialized to 0,
used, increased by 1 (to a value of 1), and then destroyed, to be re-created on the
next draw. It doesn’t hold its value.

What happens if we move the variable declaration to the setup block instead? This
way, perhaps the variable can be created only once, but used many times?

void setup()
{
 size(500,500);
}
void draw()
{
 int linePosition = 0;
 line(250,0,linePosition,linePosition);
 linePosition = linePosition + 1;
}

void setup()
{
 size(500,500);
 int linePosition = 0;
}
void draw()
{
 line(250,0,linePosition,linePosition);

Page 71 of 412 © James Young, 2015

Try to run this. Processing complains and raises an error. It says: Cannot find
anything named “linePosition”. That’s strange, we created it right there!
This raises another property of variables and blocks: A variable created inside one
block is only visible from within that block – other blocks cannot see them!
This is called a scope rule – it defines the area where a variable is visible. So, the
variable we created inside setup cannot be used or seen inside draw, since its scope
is limited to setup.

The combination of the two above rules regarding variables and scopes is a little
complex, but they will stick with you throughout the course – pay special attention to
them. A) variables only exist within the bloc they were created, and get destroyed at
the end. B) variables created inside one block is only visible from within that block.

In this case, the solution is to move our variables outside our blocks to the top of our
program. These are called global variables. This way, they are created outside the
blocks. They are created when the program starts. They exist until the program ends
– they do not get destroyed. They are also visible to all our blocks:

Cool! It works! We draw a line from that spot across the whole
diagonal. You may notice that instead of being solid black, the
region has a funny curvy wavy pattern. This is as a result of anti-
aliasing, an advanced graphics technique that is way beyond
this course! Feel free to ask your instructor about it.

One more thing. Why does the line build up a black region
across the canvas, instead of just moving along? What do you
do if you want an actual line moving across – and not leave that

 linePosition = linePosition + 1;
}

int linePosition = 0;
void setup()
{
 size(500,500);
}
void draw()
{
 line(250,0,linePosition,linePosition);
 linePosition = linePosition + 1;
}

I’m anti-aliases too
– people should use
their real names!

Page 72 of 412 © James Young, 2015

trail behind? Well, just like a real canvas, if you keep drawing, your paint adds up. If
you want an animation with something moving, you need to clear the canvas each
time. Each time you draw, you need to actually erase the old paint first. We learned
this back in chapter 2. The background command erases to a color, so you can
add this at the beginning of the draw block to start over with a fresh clean canvas
each time! (try background(127););

Where do you put the background command? If you put background at the end of
the drawing, what happens? It erases all the paint after you do your drawing but
before showing it on screen, so you end up seeing nothing. Put the background
command at the beginning of the draw block to start with a fresh canvas. Here is
the updated program

Now is a good time to re-evaluate the order that things happen in, since we have
global variables. When you press run, this is what happens, in the order
specified:

 1) the global variables are created and initialized
 2) the setup block is run one time
 3) the draw block is run. Wait and repeat, so that it is run at 60 times per second

 Processing Globals – mouse position
In addition to making your own global variables, Processing provides some global
variables for you that you can use in your program. One of the best ones (!!) is mouse
position, which you can access through the following global variables:

int linePosition = 0;
void setup()
{
 size(500,500);
}
void draw()
{
 line(250,0,linePosition,linePosition);
 linePosition = linePosition + 1;
}

// current position of the mouse pointer, x and y
mouseX
mouseY
// the previous position of the mouse, last time we drew
pmouseX

Page 73 of 412 © James Young, 2015

Note that these are variables that you can use, and are not commands. What is the
difference? Commands do work underneath the hood. You also call commands with
parenthesis () at the end of them. These are variables, so you can just read their
current value like any other variable.

Note: The mouse position variables store the position of the mouse at the
beginning of the draw block. It may have already moved by the time you draw
something! This usually doesn’t matter, but may explain some strange effects
you may see.

You can use these variables at any time. Try the following sample:

Very cool! You can make a line draw to the mouse cursor! Each time it runs, it clears
the background to black, sets the color to white, and draws from 0,0 to the mouse
location. Try moving the mouse around while the program is running.

Here is another quick example. Here, if we draw a line from the previous position to
the current one, what do we get?

void setup()
{
 size(500,500);
}
void draw()
{
 background(0);
 stroke(255);
 line(pmouseX,pmouseY,mouseX,mouseY);
}

pmouseY

void setup()
{
 size(500,500);
}
void draw()
{
 background(0);
 stroke(255);
 line(0,0,mouseX,mouseY);
}

Page 74 of 412 © James Young, 2015

This one is a lot of fun, you have to really try it – it
draws a line behind the mouse, like you’re being
followed by a tiny worm. What happens if you
remove the background command – so that we
don’t erase the paint each time? Move that
command to the setup block so that you only clear
the background once. You have a painting
program!!

 Example – hold the roof up!
Let’s draw a line across the screen that slowly falls
to the bottom of the screen. However, you can hold
it up with your mouse: that is, as the line falls, if it
hits the mouse, it will stop. There are a few pieces to this. First, let’s make an active
sketch where the line falls.

We need a global variable for the current line position. This has to be global because
we need to remember the line position between draws, so it can draw at a new
position each time as it falls.

Then, in the draw block, let’s increase its position by one, and draw a line across the
screen at that Y coordinate. Don’t forget to erase the canvas

Now we have a line that starts at a y of 0, and increases by 1 each frame, to fall
down the screen. Now for the second part: how can we push it back up with the
mouse? Well, what we need to do is to compare the mouse y coordinate with the
line. If the mouse is above the line – if the y is smaller – then move the line to that
point. Luckily we have some helper functions that we can use here. We have

This is a little tricky, but using min, we can find out which is smaller – the line position
or the mouse – and set the line to that.

int linePosition = 0;

void draw()
{
 background(255);
 linePosition = linePosition + 1;
 line(0,linePosition,500,linePosition);
}

max(a,b); // gives you the biggest of two numbers
min(a,b); // gives you the smallest of two numbers

Page 75 of 412 © James Young, 2015

linePosition = min(linePosition, mouseY);

Think through this for the second. The min
command takes the linePosition and the
mouseY, and returns whichever is smaller. We have
two basic cases, shown in diagrams here. If the
linePosition is smaller than the mouseY (higher
up, as in the first image), then min will give us the
line position. So in this case, the line position
actually doesn’t change from the min command,
and the line just keeps falling. As expected.

In the other case, if the mouseY is smaller than the
linePosition, then the min command returns
mouseY. So, the line position jumps to the mouse
location. In this case, the line cannot fall anymore,
because each time, the line gets brought back to the
mouse position.

This solves the exercise! You can now hold up the line. Here is my final code:

linePosition = min(linePosition, mouseY);
// if line position is smaller than mouseY,
// then this essentially becomes
linePosition = linePosition; // no change!

linePosition = min(linePosition, mouseY);
// if mouseY is smaller or equal to line position,
// then this essentially becomes
linePosition = mouseY; // move the line to the mouse

int linePosition = 0;
void setup()
{
 size(500,500);
}

void draw()

Page 76 of 412 © James Young, 2015

Now is a good time to look closely at this program. Do you know what order things
happen in? Do you remember exactly what happens, step by step? This course will
only start to get more complicated, so now is the time to ensure that you understand
the mechanics here – you need to know what happens, in what order, piece by piece.

 Example – make the cat face active
Let’s try to update our earlier cat face to be an active sketch. One great thing we did
was to make the cat nose and whiskers all draw relative to some variable values.
Don’t remember? Re-visit Unit 3 for a quick refresher. What happens if we link these
variables to the mouse coordinates?

First, type up the last cat example again from Section 3.8. Run it to make sure it
works.

To make the program global, you need to break the program into the draw and
setup blocks. In this case, keep the variables global. Remember that no commands
except for the variable declarations can be outside the blocks. How do you decide
what goes into the setup and draw? Remember: do once, goes in setup. Draw
each time, goes in draw. In this case, the setup only needs the canvas size setting.

Next, since we are re-drawing the cat rapidly, make sure to clear the canvas
(probably to black?) on each draw. This way, if we move the cat, we won’t have the
old paint kicking around. Now, run your program to ensure it works.

Finally, let’s animate the mouse. Currently, the nose center of the cat is linked to the
global variables noseCenterX and noseCenterY, which are set to static values at
the start of the program. To animate the cat, instead update the nose center based
on the mouse position. At the beginning of the draw block, copy the mouse position
into the nose center variables. Now you have an animated cat face! Try running it!

Just in case you hit a snag, here is my final cat-face code. You should try linking the
mouse to other things, such as eye position, size, etc. Play around with this.

{
 background(255);
 linePosition = linePosition + 1;
 linePosition = min(mouseY, linePosition);
 line(0,linePosition,500,linePosition);
}

/*******************
 * Cat Face! Draw a cat face on the screen
 * author: Teo the dog

Page 77 of 412 © James Young, 2015

 * version: try #awesome
 * purpose: to show how a cat can be drawn
 ********************/

// variables
int headCenterX = 250;
int headCenterY = 250;
int noseSize = 30;
int pupilWidth = 15;
int noseCenterX = headCenterX;
int noseCenterY = headCenterY+50;

void setup()
{
 size(500, 500); // make a 500x500 canvas
}

void draw()
{
 background(0);
 // copy the mouse position into the nose position
 noseCenterX = mouseX;
 noseCenterY = mouseY;

 //draw the head
 ellipse(headCenterX, headCenterY, 300, 300);

 //draw the ears
 triangle(headCenterX+125, headCenterY-170,
 headCenterX+50, headCenterY-100,
 headCenterX+150, headCenterY-50);
 triangle(headCenterX-125, headCenterY-170,
 headCenterX-50, headCenterY-100,
 headCenterX-150, headCenterY-50);

 //draw the eyes
 ellipse(headCenterX-75, headCenterY-25,
 pupilWidth*4, pupilWidth*2); // left eye
 ellipse(headCenterX-75, headCenterY-25,
 pupilWidth, pupilWidth*2);

Page 78 of 412 © James Young, 2015

 Example – mouse bubbles
Let’s make bubbles come out from the mouse
cursor. Like in the inset, except animated – they
come up out of the mouse and then pop, and
another one comes up.

How do you attack this problem? The bubble is
size 0 at the mouse pointer and slowly grows to
some maximum size (say, 50). As it grows, it
moves up (-y) and right (+x).

First, just think about the static cases. This is a
common technique for tackling a larger problem. If
we can solve the basic problem in a few of the
static cases, it makes seeing the animation
solution a little easier. Let’s draw a bubble of size 0 at the mouse pointer:

 ellipse(headCenterX+75, headCenterY-25,
 pupilWidth*4, pupilWidth*2); // right eye
 ellipse(headCenterX+75, headCenterY-25,
 pupilWidth, pupilWidth*2);

 //whiskers!
 line(noseCenterX, noseCenterY,

 noseCenterX-50, noseCenterY-25);
 line(noseCenterX, noseCenterY,

 noseCenterX+50, noseCenterY-25);
 line(noseCenterX, noseCenterY,

 noseCenterX-60, noseCenterY);
 line(noseCenterX, noseCenterY,

 noseCenterX+60, noseCenterY);
 line(noseCenterX, noseCenterY,

 noseCenterX-50, noseCenterY+25);
 line(noseCenterX, noseCenterY,

 noseCenterX+50, noseCenterY+25);

 // draw the nose after whiskers for nice overlap effect
 ellipse(noseCenterX, noseCenterY, noseSize, noseSize);
}

ellipse(mouseX,mouseY,0,0);

Page 79 of 412 © James Young, 2015

clearly this is useless. But, what bubble is next? It’s a size 1 bubble, with +1 x and
-1 y in comparison to this one.

What bubble is next? Size 2

Do you see the pattern? At each step, we add to x the step amount, subtract it from
y, and make the ellipse that size. Look at them lined up

Why don’t we replace those numbers with a variable and see how it looks?

int step = 0;
ellipse(mouseX+step, mouseY-step, step, step);

Now, to draw the next bubble, we increase step by one and use the exact same
ellipse code.

step = step + 1;
ellipse(mouseX+step,mouseY-step, step, step); // same above

If we look at all three, then we can see a pattern

This is nice because the ellipse command is identical, and all that we do is change
the step variable. In this case, we don’t want to draw all 50 bubbles at once, we
want them to animate. Also, copy-pasting this 50 times is tedious and not a good
use of time. So what can we do? Since we know that draw runs repeatedly, if we
make step a global variable, we can increase the step size each time draw runs.

ellipse(mouseX+1,mouseY-1,1,1);

ellipse(mouseX+2,mouseY-2,2,2);

ellipse(mouseX,mouseY,0,0);
ellipse(mouseX+1,mouseY-1,1,1);
ellipse(mouseX+2,mouseY-2,2,2);

int step = 0;
ellipse(mouseX+step, mouseY-step, step, step);
step = step + 1;
ellipse(mouseX+step, mouseY-step, step, step); // same above
step = step + 1;
ellipse(mouseX+step, mouseY-step, step, step); // same above

Page 80 of 412 © James Young, 2015

This way, each draw gives us one bubble. Then it gets bigger for the next draw, and
so on. It also gets further away. Here is how it may work.

Try coding this up. yes! We have the animation! So what’s the next problem?

Step just keeps getting bigger and bigger… but we want it to reach size 50 and then
start over with a new bubble.

There are several ways to solve this. However, one of the simplest ways is to use a
technique that we actually already learned, but unfortunately, is not very obvious at
all. We can do this using modulo (the remainder function). Let me explain…

Let’s say that you have a number, n, and you divide it by, say, 4. What possible
results can you get? What remainders can you get? You should try calculating out n
from 1 to 20 and see what remainder you get. Here are the first 8.

n 0 1 2 3 4 5 6 7 8
n/4 0 0 0 0 1 1 1 1 2

n%4 0 1 2 3 0 1 2 3 0

Do you notice anything special about the remainder? What possible remainders can
we get? If we do n/4, can we get remainder 5? Why not?

Remainders of n/m are always in the range from 0 to m-1. In this case, if you divide
a number by 4, it is always in the range 0...3. Once it hits 4, the division result gets
bigger, and the remainder re-starts at zero. This is quite confusing, think on it a
minute.

So how does this help us? We can use modulo to make our step size loop. If we do
the following:

Then step will go from, 0,1,2,…,49. When it hits 50, the remainder is 0 again. You
may have noticed that I can write the above two lines in one single line:

//globals
int step = 0;
…
// in draw
ellipse(mouseX+step, mouseY-step, step, step);
step = step + 1;

step = step + 1;
step = step % 50; // remainder when /50

Page 81 of 412 © James Young, 2015

And it works! Step gets bigger, but once it hits 50, it starts at 0 again. We’re done
this example! Here is my final code:

Make sure you take time to really understand what is going on here. There are only
a few lines of code, but this is suddenly a lot more complex than what you have been
seeing in previous units. Now is the time to get help with this if you’re not following,
since things are just going to get harder from here.

 Check Your Understanding: Exercises

 Create an active Processing program that draws a circle directly
under the mouse as it moves around. Make the circle have a radius of 20, and
make it white against a black background. There should be no trails left behind
the mouse as it moves around.

a. Update this example so that the width of the ellipse is 1 tenth the
mouseX coordinate, and the height is 1 20th of the mouseY.

 Create an active Processing program that visualizes the remainder
(modulo or mod) operator (%). You will do this by making a block that follows the
mouse, but the block’s size will be the remainder when the x coordinate is divided
by 100. Specifically:

a. Create the setup and draw blocks, and resize the canvas to 500x500
in the setup block.

b. Create the following global integer constants (use “final” to declare

step = (step+1)%50; // same as above.

int step = 0;

void setup()
{
 size(500, 500);
}
void draw()
{
 background(0);
 ellipse(mouseX+step, mouseY-step, step, step);
 step = (step + 1)%50;
}

Check your Understanding

CuSn

CuSn

Page 82 of 412 © James Young, 2015

them) and set them to reasonable greyscale values: BG_COLOR,
BOX_COLOR

c. In the draw block, create the following local variables and set them to
the current mouse coordinates: boxX (set to mouseX), boxY (set to
mouseY)

d. Create a local variable boxSize and set it temporarily to size 30.
e. Use the rect command to draw the box using boxX, boxY, and

boxSize. Don’t forget to set the fill color.
f. Run your program and make sure that the box follows the mouse

around. Notice that the box touches the mouse at the top left corner.
g. Next, make the box centered on the mouse. Offset boxX and boxY by

half the size of the box. That is, subtract boxSize/2 from mouseX and
from mouseY when setting boxX and boxY. This will make the box
centered on the mouse. Be sure to use the boxSize variable and not
literal numbers.

h. Run your program – it should now follow the mouse but be centered
on the mouse.

i. Now, to visualize mod, set the box size to the remainder when you
divide the mouseX coordinate by 100. Remember that you can get the
remainder by using the % operator. The size of the box will now change
to values from 0 to 99.

j. Run your program. You should now see what the remainder looks like
as you move the mouse from left to right across the x axis – it gets
larger until it reaches its maximum size, then resets to size 0, and
repeats!

k. Finally, after calculating boxSize, but before using it to calculate boxX
and boxY, make sure that the size is never less than 10. Use either
the min or the max function to do this.

 Create a program that simulates a ball hanging from the mouse on
an elastic band.

a. Create an empty active Processing
program with setup and draw
blocks, and a canvas of 500x500.

b. Create global integer variables to
keep track of the ball’s position. Also
create variables to set the ball’s color
and size. The ball can start initially at
the center of the canvas.

c. Make the draw block draw the ball
and clear the canvas each frame.
Use global variables. Your program
should run now although not much

Ag

Page 83 of 412 © James Young, 2015

will happen.
d. In each iteration of the draw block, make the ball move toward the

mouse. This is tricky, you do it as follows. Do the X and Y separately.
i. Calculate how far the ball is from the mouse in terms of X: create

a new local integer variable called diffX and set it to mouseX
– ballX.

ii. If we add diffX to ballX (ballX = ballX + diffX) then
the ball will move to the mouse. Try the algebra on a piece of
paper and you will see it.

iii. Instead, add 1/10th of the difference to ballX. Do this in one
line, by setting ballX to ballX plus diffX divided by 10.

iv. Do this for the Y coordinate as well in the same way
e. Draw a line from the ball to the mouse to simulate an elastic.
f. Now, add gravity! In each frame, simply add 10 pixels to the Y. The ball

will fall, and, will stop falling when it tries to move 10 pixels toward the
mouse but is pulled down 10 pixels by gravity.

 Create a program where the mouse acts like
a joystick to drive a ball on the screen. In the picture
shown you can see a cross hairs, and a ball. This
program will work as follows: if the mouse is at the
crosshairs, the ball doesn’t move. If the mouse is to the
right or left, the ball moves right or left. If the mouse is
above or below the center, the ball moves up or down.
The distance of the mouse from the center determines
how fast the ball moves.

a. First, draw the crosshairs. The exact dimensions do not matter as long
as they center in the middle of the screen.

b. Create some global variables to remember where the ball is. Start the
ball at the center of the screen. Don’t forget to draw the ball1

c. Calculate how much the ball should move in the x and y directions
separately and store in the variables moveX and moveY.

i. For x, you use mouseX-250. If the mouse is at 250 (the screen
center), then we get 0, no movement! If the mouse is left of 250,
you get negative movement! If it is to the right, you get positive
movement.

ii. Do the same for Y.
d. Add the moveX and Y to the ball position.
e. Run your program, the ball should move. But – Whoa! It flies off the

screen! Use min and max to make sure the ball stays within visible
range

i. Use one check for the right side of the screen, and one for the
left. It is easy to get min and max backward here, so try an

Ag

Page 84 of 412 © James Young, 2015

example on paper.
ii. Use another set of checks for the top and bottom of the screen
iii. Can you figure out how to do it so that the whole ball stays on

the screen and not just half? The basic solution works off of the
ball center, so it goes over the edge…

f. Finally, the ball moves way too fast. How can you make it move slower?
Just use division on the move speeds.

 Let’s write a processing program that uses some clever math to
make visual effects. This program will have two distinct features: a rectangle will
snap to a grid under the mouse (move along the grid as you move the mouse
instead of being right under the mouse), and, the color will follow a simple formula

that makes it look unpredictable.

a. Create a clean active Java program, with a
canvas sized 500
b. You will make a rectangle snap to a grid 10
by 10 (100 places). Make a global called gridSize
and set it to 10. In the draw loop, make a local
variable called cellSize (how big each cell is) and
store the size of each cell. Hint: screen size divided
by grid size.
c. Calculate the top left corner for a rectangle
to draw. This corner will have to snap to this grid.
That is, it can only be 0,0, or cellsize*i,
cellsize*j for some integers i and j. You will

find the nearest grid point to the top left of the mouse cursor. There is
a trick to it.

d. Integer division always throws away the fraction part. If you divide the
mouse coordinate by the cell size, it will tell you how many cells along
the mouse is. Do this separately for x and y and store in int cellX,
cellY. This is not the coordinates on the screen, but rather, the cell
number

e. Convert from the cell numbers to screen coordinates. This is easy. Just
multiply the cell number by the cell size. Cell 0 gives you 0, cell 1 gives
cellSize, and cell 2 gives 2*cellSize

f. Draw a rectangle at this cell
g. Now you should be done the drawing part. Set some simple color for

now and debug up to this point before moving along. Next let’s work
on the color.

h. Create a global integer called runningColor to keep track of the last
color we used. Then, each frame calculate the color as follows. This is
not something you should develop an intuition for, it’s just a silly bit of
math to make the color act interestingly as you move the mouse

Au

Page 85 of 412 © James Young, 2015

around.
i. Take the product of the mouseX and runningColor and add mouseY

to it. Then modulo the result by 256, and multiply by -1. Store this final
result as the new runningColor.

j. Before setting the current fill and stroke color to running color, make a
copy and cap it above zero in case it happened to go negative. Don’t
store the capped number in runningColor, if its negative let it stay
that way for next time.

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

Page 86 of 412 © James Young, 2015

(page intentionally left blank)

