

Page 107 of 412 © James Young, 2015

 REAL NUMBERS – FLOATING POINT

Summary
Up until now in the course, all your calculations have involved whole numbers. We
did not have any mechanism for using numbers with decimals, known as real
numbers. Here we learn how to use a new data type to enable us to use decimals.

In this section, you will…

 Learn how to create variables that can store real numbers
 Learn how to work with real numbers, e.g., basic math functions
 Revisit high-school trigonometry, and learn about sine, cosine, and tangent in

processing
 See how we can make random numbers
 Learn new basic math shortcuts for real numbers and integers
 Learn a few new globals to get the canvas size
 See the limitations of real numbers when implemented in computers

Learning Objectives
After finishing this unit, you will be able to …

 Create variables to store real numbers
 Work with real numbers, e.g., do basic math operations
 Do basic trigonometry to help with graphical calculations
 Use shortcuts for addition, subtraction, multiplication, division, and modulo
 Get the canvas size from new global variables

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 108 of 412 © James Young, 2015

 Introduction
We learned already about integers in Processing, but sometimes we cannot be
limited to whole numbers. Real numbers are basically the same as integers except
you can have a decimal portion attached to them. With real numbers, the operation
5/2 gives us 2.5, not 2 remainder 1. This may seem more natural to you, but you will
still end up using integers an awful lot. There are several reasons, but the primary
one is that real numbers cannot be fully trusted (more on that later!), while integers
can. Also, computers are generally faster when working with
integers, which is important in a lot of applications.

To use real numbers in Processing we need a new data type:
floating point numbers. This works basically the same as
integers, except we use the word float instead of int to
create the variable, and now we can assign decimal portions to
the variable:

Let’s try it with the following static program:

yes it works! By using a floating point, we can now calculate things like drawing 33%
across the screen. This scales nicely, and you can use
real numbers throughout your program.

Why do we call them floating points, and not just real
numbers? This is just because of how they are stored
inside the computer. The computer uses something
akin to scientific notation to store these numbers. For
example, 1234.5 could be stored as 1.2345x103. Just
by changing the exponent, we can go from this large
number to a small one, that is, 1.2345x10-3 gives us
0.0012345. The point (dot) can float around, giving us
very large and very small numbers.

 Real Numbers and Calculations
For the most part, you use the same basic calculation syntax we already learned for
addition, subtraction, multiplication, and division. However, there is a big gotcha: let’s

float variableName;

size(500,500);
float percent = 0.33;
line(0,250,percent*500,250); // draw percent way across

Wait – those other
numbers aren’t
real??

Page 109 of 412 © James Young, 2015

try to shift the above example slightly:

What happens? Try running this program. The line disappears! Let’s investigate by
using print to output the percent:

you get 0. What happened? Why would 33/100 give you zero?

This happens because Processing is still doing integer division. Let’s look at the line
that is causing the problem.

You would think that Processing can look at this, see that you are storing into a
float, and do what you want. Unfortunately, computers are stupid. Processing is
very very near sighted. When doing that division, it only looks at the numbers right
beside it, and not the bigger context. When it sees 33/100, it thinks: oh! 33 is an
integer. 100 is an integer. Let’s do integer division. If the numbers in an operation
are integers, integer arithmetic is used. In technical terms, if the operands are
integers, Processing uses an integer operator.

How do we fix this problem? We can basically re-think the above statement about
integers. If either of the numbers in an operation are floating point, Processing
does floating point math. So we can fix this by making one of the numbers floating
point. How would we do this? How about

Yes! It works! Processing looks at the operation, sees a floating point, and uses
floating point math. The 100 could also have been changed to 100.0, or both
numbers can change. You get the same result.

Unfortunately, this can get very tricky. Let’s think about the following example:

If you test the output, you get 1, not 2.5! Integer division is at the root of the issue
here. To figure this out, let’s look at the order of operations. Multiplication and division
happen first, going left to right. So, the first calculation we see is 1/2. Since
Processing is so narrow sighted, it only sees integer / integer, and does integer

float percent = 33/100;
line(0,250,percent*500,250); // draw percent way across

println(percent);

float percent = 33/100;

float percent = 33.0/100;

float result = 1.0 + 1/2*3.0; // expected 2.5

Page 110 of 412 © James Young, 2015

division. 1/2 gives you 0, so we get 1.0 + 0*3, = 1.

Now, let’s try an example using floating points. Let’s
make a bubble go in a circle around the mouse, like
a planet orbiting it.

Unfortunately, we cannot so easily do that with the
current tools that we have. We first need to learn
how to do trigonometry in Processing – we need
sine and cosine to calculate the points on the circle.

 Trigonometry in Processing
When you left high school, I just know one of your
dreams in university was to get more use out of
sine, cosine, and tangent – those amazing geometric functions that are so useful!
Well here’s your chance! Trigonometry is extremely useful and powerful in computer
graphics, and we’ll use it in this course.

First, I have to point out that Processing uses radians, not degrees, for angles.
Remember that radians go from 0 to 2*PI whereas degrees go from 0 to 360. There
are functions in processing to go between radians and degrees, but I’m not going to
teach them and I recommend you just stick to radians. Besides, doing the conversion
yourself is really easy.

The first thing to learn is that Processing has a built in global
constant called PI. It is a constant because you are not allowed
to change its value (good!!). You can use this constant pretty
much just like any other variable, just remember to use ALL
CAPS – as we learned earlier, this is a convention for letting
people know the variable is constant:

In addition to this
constant, processing provides the following commands. I am going to present these
commands in a new way, a way that is common in programming. When you describe
a command, it is useful to specify what kind of data you give it (parameters) and
what kind of data it gives you, like this:

the first type explains what kind of data the command gives you, and the parameters
are what you give it. Let’s try this for the trigonometry functions

println(PI);

type commandName(type parameter);

I always use ALL
CAPS WHEN I
LEAVE YOUTUBE
COMMENTS

Page 111 of 412 © James Young, 2015

The sine command (sin) takes radians as a float, and gives you
the sine result as a float. You can use the result to store into a
variable or print out to screen, e.g.,

or store the result in a variable:

And you can use this in your calculations.

You also have the inverse commands. These are often tossed into text books as
sin-1, cos-1, tan-1, but are also called arcsine, arccos, and arctan. These go
backward, and given a number, gives you the ratio (e.g., opposite / hypotenuse) that
created that ratio. You won’t use these as often, but it’s useful to know that they exist.

Advanced: atan has a particular problem. Remember that tan(θ) is opp / adj.
Depending on which quadrant you are in, opp and adj can be both negative,
positive, or a mix. The problem is that if both are negative, you get the same ratio as
if they were both positive, since the negative signs cancel out. The only way to
deduce which quadrant the angle belongs in is to know those original plus and minus
signs, and do a case by case calculation. Luckily, processing helps you out with this
with the atan2 command that does the calculation for you.

Now, with these functions, we can make a circle spin around the mouse cursor! This
is how we do it. As with other examples, we approach this by first solving the static
case: that is, place a ball at some angle and distance from the mouse, but don’t
animate it yet. Let’s pick some angle and call it theta (θ).

float sin(float radians); // sine of radians
float cos(float radians); // cosine of radians
float tan(float radians); // tangent

print(sin(PI));

float result = sin(0.4);

float asin(float ratio); // inverse sin
float acos(float ratio); // inverse cos
float atan(float ratio); // inverse tan

float atan2(opposite, adjacent); // OR easier to understand:
float atan2(y,x); // gives correct angle from a y and x offset

float theta = 0; // angle of 0 radians, straight right

SOHCAHTOA!!

Page 112 of 412 © James Young, 2015

We also need to specify how far from the mouse cursor our ball should orbit. This is
our radius.

float radius = 50; // distance from the mouse to orbit

Given our angle theta, and radius, where should we draw the ball? Luckily, this is
basic trigonometry! As shown in the diagram, we if we are given the angle and the
radius, we can easily calculate x and y:

 sin(theta) = y/radius  sin(theta)*radius = y
 cos(theta) = x/radius  cos(theta)*radius = x

It is a good idea to review your basic trigonometry triangle as
shown in the diagram, since this will come up again and
again.

Let’s translate this into processing:

that’s it! We have calculated the x and y location at the given angle and radius. Let’s
test it by drawing an ellipse at our new coordinate.

It works! You should see a ball to the right of the origin (top left of the screen). Now
let’s make it relative to the mouse cursor. All that we have to do is to add the mouse
location to it:

As you can see, in processing, 0 radians (or degrees) is
straight right along the x axis, as you would expect. Unlike
you learned in high school, however, angles increase
clockwise in Processing, because the y axis is upside
down! Test this by looking at where the ball goes at PI/2
(45 degrees), PI, etc.

So now that we can draw a ball at a given angle relative
to the mouse, how do we make the ball rotate around the
mouse? We can do this the same way that we did for the
bubbles: we increase the ball angle by some delta each
time it is drawn. Let’s make a new variable called delta that determines how fast

float x = cos(theta)*radius;
float y = sin(theta)*radius;

ellipse(x,y,10,10);

ellipse(mouseX+x, mouseY+y, 10, 10);

θ
x

y

Page 113 of 412 © James Young, 2015

the ball moves. That is, how much to change the angle each frame.

and, after drawing the ellipse, increase your theta by this delta:

Every time you draw, theta will increase. Now, since this is radians, we can just let it
get bigger – once it gets bigger than 2 PI it will automatically loop around. That is,
3PI radians gives you the same angle as PI radians.

Can you get it to work with all these pieces? Here is my final code:

I really need to emphasize the importance of reviewing your basic trigonometry. This
course is not about trigonometry, but you are expected to know your basic math to
do work. If you are still not up to speed on this, you will get bogged down in examples
later, and will find yourself missing what you are really supposed to be learning.

 Random
Let’s make a program that continuously draws lines from the mouse cursor to
random spots on the screen. Until now, everything we do is static, but Processing
provides a nice simple way to generate a random number:

float delta = 0.1;

theta = theta + delta;

float theta = 0;
float delta = 0.1;
float radius = 50;
float size = 10;

void setup()
{
 size(500, 500);
}
void draw()
{
 background(0);
 float x = cos(theta)*radius;
 float y = sin(theta)*radius;
 ellipse(mouseX+x, mouseY+y, size, size);
 theta = theta + delta;
}

Page 114 of 412 © James Young, 2015

This generates a random number [0..high]. That is, from 0 up to high, but not
including high. For example,

This gives you a number that you can store in a variable or use in a command. Fist,
try drawing a line from the center of the screen to a random point in a static program.
This assumes a canvas of 500x500 pixels.

line(250,250,random(500),random(500));

run this program, and you will see a random line.
Run it again. And again... and you will get a
different line each time. Let’s make this active,
but instead draw from the mouse location.

Random is pretty easy to use. The complications
come when you want to generate specific
ranges of numbers, as we often get off-by-one
errors since the math is easy but tricky. The
other complication is that this is a floating point,
and we often want integers (e.g., for a dice roll).
We’ll learn how to fix that in a later chapter.

 Limitations of floating point numbers
In the abstract mathematical world, real numbers have infinite possibilities. A number
like 1/3, or 0.6666 repeating, goes on forever. Other numbers, like pi, are irrational
and never repeat (and go on forever). Other numbers, like 0.1, is a lot better behaved,
and easy to represent.

Unlike the abstract mathematical world, the real world has limitations. Computers
have limited memory. When storing 0.6666 repeating, or pi, a computer cannot store
infinite digits because they don’t have infinite memory. By necessity, computers store
approximations of real numbers. How closely the number is approximated depends
on how much memory it uses – using more memory lets you approximate better, etc.

So, when a computer stores a number like 0.66666, it will only store so many sixes.
Try the following:

float random(float high)

random(500) // number from 0..499.9999

println(2/3.0);

Page 115 of 412 © James Young, 2015

You should get the output 0.6666667, which is a reasonable approximation.

This same applies with larger numbers, not only the decimals. For example, try the
following:

The output is 6666.667 – by making the number larger, we lose some of the decimals.
That is because we still have the same amount of memory for the approximation,
some of it is now just used for the whole number portion. If you want, you can even
move the digits completely out of the decimal portion:

Which gives you 6666667.0! You can take this further, but no matter how large or
how small your number gets, the computer has limited precision with which it
approximates the true number.

If you remember, floating point numbers are stored as scientific notation. As such,
your range of possible values is very large – just by changing an exponent, you can
get very very large and very very small numbers. However, no matter how large or
small, you still only have so many digits of precision. For example, if you wanted to
store 2/3.0 multiplied by a billion, you would get something like 6,666,660,000. A
large number, but not entirely accurate down to the number level. In Processing, and
in Java, the range of possible values for a float is roughly from 3.4x10-38 to 3.4x1038,
and can be negative or positive, although the precision is limited. You don’t really
need to be aware of this range except in special circumstances.

There is another important limitation of floating point numbers. Because we think in
base 10, and a computer thinks in base 2 (1s and 0s), not every number can be
stored perfectly. This is a really hard concept to get your head around, so don’t worry
about the detail for now (but see the advanced blurb below).

For most people, this situation is just fine. For the calculations you will do in this
class, these limitations will not usually pose a problem. However, you must be aware
of the limitations, as they explain certain things that you will see as you go through
programming. Here is an example to illustrate: do the following two lines of code give
me the same output? Think about it:

Mathematically, the results should be the same. However, try running the code:

println(2/3.0*10000);

println(2/3.0*10000000);

println(0.7);
println(0.6+0.1);

Page 116 of 412 © James Young, 2015

The result is different! Because of how the computer stores the numbers, you can’t
trust the result. At this point, you don’t need to worry about
exactly why this is but just remember: floating point
numbers cannot be trusted to be exact. This will keep
coming up again in the course, but if you need exact numbers
(such as for money!!) you should not use floating point
variables.

Advanced: Here is a way to think about this limitation. If you
have an 8 bit number, we have 28 combinations, and it can
store 0...255. Even though it goes form the smallest binary number (00000000) to
the largest (11111111), when we move to decimal, we only hit a small part of the 3-
digit range (000-999). If we were to take this same number and upgrade it to floating
point, e.g., with scientific notation, then add an exponent. Say the exponent can be
small or large, then we can now take a number like 25 and have very large numbers,
say, 2.5x105 or 2.5x10-5. We already saw that we have limited precision, but now,
how could we store the number 9.99? The 8 bit underlying number only goes from
0...255, so we cannot even do 2.56. Computers solve this by storing the number
slightly differently, in a somewhat complex way. The result is that we get the full range
nicely in decimal (000-999), but we lose some precision about which numbers can
be stored exactly. You’ll learn this in greater detail in a later course.

 Dusty Corners: Shortcuts and new Globals
There are a few extra things to show you at this point. These did not come up earlier
just for simplicity’s sake.

First, Programmers hate typing, and will find any opportunity to shorten what they
have to type. There is a whole range of simple shortcuts that you will see and find
yourself using, I introduce a few of those here.

It is very common – as you have seen in our examples – to do operations of the
following pattern:

and so on. These have short hand versions:

0.7
0.70000005

variable = variable + number;
variable = variable * number;

variable += number; // variable = variable + number
variable -= number; // variable = variable - number

Numbers cannot be
trusted? I knew it!
Never trust statistics!

Page 117 of 412 © James Young, 2015

These safe just a few keystrokes, but you will find yourself using them!

Another shortcut is incrementors and decrementors. Even more common than the
examples above is to increase or decrease a variable by 1. We saw this often in our
exercises. For example:

we already learned that we can shorten this to

but there’s even a quicker way!

There is also

Again, it may seem silly to have such shortcuts, but you
will find yourself using them.

Finally, there are two new globals for you to use. Once the canvas size is set, you
can read from two global variables what the current size is. You have width and
height, which tell you how many pixels there are. For example, you can draw a line
from the top left to the bottom right as follows

Why the minus 1? Maybe review that from unit 2?

 Example: block moving around randomly
Let’s make a square block that moves randomly around the screen. Moving in
random directions around the screen is not the same as moving to random locations!
If a block is at a certain location, then it should move in some direction away from
where it is.

variable *= number; // variable = variable * number
variable /= number; // variable = variable / number
variable %= number; // variable = variable % number

variable = variable + 1;

variable += 1;

variable++; // variable = variable + 1

variable--; // variable = variable – 1

line(0,0,width-1,height-1);

That’s why it’s called C++!
It’s the next version of the
C programming language

Page 118 of 412 © James Young, 2015

First, make some globals to store the block position (you need two for this) and size.
You will also need a variable to store how quickly it can move. Make the block speed
around 5 to start. Make these floating point variables. In the draw block, clear the
screen, leave a blank for our moving code, and draw the block using the rectangle
command.

The first challenge is thinking about how to move the block randomly. An easy way
to do this is to move the X and Y separately. Start with just X for now, to simplify the
code. Make a variable called moveX, and use the random command to generate how
much that the block should move, using your global variable. For example:

Then, add your moveX to your block position, so that the block moves by this amount
in the frame.

Try this out. You should notice that the block moves by a random amount – however,
there is a caveat! The block only moves to the right! If you think about this, it makes
sense: random gives us a positive number, and we add that to the blockX, so the
blockX can only get bigger. This means it can only move to the right.

You need to do some clever but basic arithmetic to get this to work. Basically, we
want the block to move either in the negative direction by our maximum, or in the
positive by our maximum, or no movement at all. So, our actual range of potential
movement is double the maximum. Consider the following number line, with a
maximum movement of 3.

We want a random number somewhere on this line. A call to random(3) gives us a
range of almost 4, from 0...3.999. If we use random(2*3), double the maximum,
we get a range of almost 6, 0...5.999. If you look at the number line above, you can
see that this is right – we need a range of 6. Now, the result from random needs to
be shifted to match our number line. If we subtract three: random(6)-3 gives us a
range from (0…5.999)-3, which is -3…2.999, which matches our number line. To turn
this into code, we need a new calculation for moveX:

Now, you can adjust this to also move in the Y direction.

float moveX = random(MOVE_MAX);

blockX += moveX;

float moveX = random(MOVE_MAX*2)-MOVE_MAX;

0 3 -3

Page 119 of 412 © James Young, 2015

Finally, there remains a problem: the block moves off of the edge of the screen. You
can fix this in your own time, using the min and max functions. Review the earlier
section if you are not sure how this may work. (Note: min and max work just fine with
floats).

 Check Your Understanding: Exercises

 Make a program that converts from Celsius to Fahrenheit. Make a
static program for this, and use floats for all your variables. Make one variable to
store a Celsius value (e.g., 25), and then convert it to Fahrenheit using the
following formula: f = 9/5*c + 32. Output your result using println. Be careful of
integer division! 20c should give you 68f.

 In section 7.3, you made a ball orbit the mouse.

a. Make the ball orbit in an ellipse instead of a circle. You can do this by using a
different radius for the x and for the y calculations.

b. Make multiple balls orbit the mouse at different speeds. E.g., make three.
c. Make one move in the opposite direction (counter-clockwise).

 You will make an interesting drawing program that lets you make

images as shown in the inset. To get this working correctly you will need to create
an active processing program, and use floating point numbers.

a. Create an active processing program and in
the setup block create a canvas window
with a black background. Your program
should work with a window of any size,
square or rectangular.

b. You will be drawing a circle (i.e., an ellipse)
at the mouse position. However, the size
and fill color of the ellipse will be calculated
based on the distance from the mouse to
the center of the window, as explained
below.

c. The following formula can be used to
calculate the distance between any two
points ሺݔଵ, ଵሻݕ and ሺݔଶ, :ଶሻݕ distance ൌ
	ඥሺݔଶ െ ଵሻଶݔ ൅ ሺݕଶ െ ଵሻଶݕ . To get the square root, use the built-in function
sqrt(x) which returns √ݔ. It would also be convenient to use the function

Check your Understanding

CuSn

CuSn

Page 120 of 412 © James Young, 2015

sq(x) which returns ݔଶ. Both work with float values.
d. Draw a new circle, every time, in the draw block, with its center at the mouse

position, and a diameter equal to the distance from the mouse to the center of
the window. Test it. You should get an image like the one above, except that all
the circles will be white

e. Now change the fill color of the circle. It should also depend on the distance from
the mouse to the center of the window, but it should be 255 (white) at the exact
center (distance 0), and 0 (black) if the mouse is as far away as possible (the
distance from (0,0) to the window’s center):

i. Calculate the maximum possible distance.
ii. Convert the mouse’s distance to a proportion of this distance (a float value

from 0.0 to 1.0).
iii. Use this to compute the correct color. (You want 255 if the proportion is

0.0, and you want 0 if the proportion is 1.0.) The formula is very simple.
Think about it.

 Make example 7.7 also move toward the mouse, in addition to

moving randomly. This will simulate what an enemy in a video game may do –
move about, by tend toward your player.

a. First, calculate how far away the block is from the mouse. This is a very
simple calculation if you do x and y separately. Think about it: how far
in the x direction? How far in the y direction?

b. If you add this result to the block position, it will just be at the mouse.
Instead, make it move toward the mouse; scale your results down by
dividing by some number.

 You will implement a mathematical

function which generates a class of shape called a
rose in mathematics. There are details of this online
(http://en.wikipedia.org/wiki/Rose _(mathematics))
but basically this is like a Spirograph. It creates
images such as the one shown on the right.

You can generate roses with different numbers of
petals, using a parameterized function. Some
parameter variable (often t) is allowed to vary
smoothly from one value to another (often from 0 to
2π), and then the quantity of interest (here we want an (x,y) point) is obtained
using a formula that depends on t. There are usually some other constants as well.

Ag

CuSn

Page 121 of 412 © James Young, 2015

To get a “rose” use:

 x ൌ cosሺ݇ݐሻ cosሺݐሻ ∗ ݎ ൅ ௖ݔ

 y ൌ 	 cosሺ݇ݐሻ sinሺݐሻ ∗ ݎ ൅ ௖ݕ

The value k affects how many petals are drawn. Try 4, which would give the
shape above. The value r is the radius of the rose (for us, that will be in pixels).
Use most of the window, as shown. The point (ݔ௖, ௖ሻ is the centre of the roseݕ
(which should be the center of the window). As t changes from 0 to 2π, in many
small steps, the points (x,y) generated by the formulae above will trace out the
rose.

a. Use a global variable t, which starts at 0, and increases by some small
amount every frame. (Here, a single-letter name is OK, since it’s traditional.
But don’t make a habit of it!) Use a global constant for the amount of change
each frame. A value of 0.01 will give a smooth curve, but 0.05 is faster.

b. Also use global constants for the other values needed by the formulae (k and
r). Always use the center of the window for (ݔ௖, .௖ሻݕ

c. Each frame, calculate a new point (x,y), and draw a line from the previous
(x,y) point to the new one. You will have to keep track of the previous point
for yourself, using global variables. This gets a little tricky, but you won’t see
why until you see the result!

d. Make sure that t never gets larger than two pi.
e. You can get cool variants by changing the formula a bit. Replace cosሺ݇ݐሻ

with ሺcosሺ݇ݐሻ ൅ ܽሻ (the brackets are important). Then set a to some value
like 0.1, 0.5, and see the difference.

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

Page 122 of 412 © James Young, 2015

(page intentionally left blank)

