
 

Page 285 of 412 jimyoung.ca/learnToProgram © James Young, 2016 

 COMPILING AND THE JAVA VIRTUAL MACHINE 

Summary 
You will learn about the problem of computers only understanding binary, and how 
we get from our Processing program to running a program. You will learn about 

 Compiling 
 Virtual Machines 

 

Learning Objectives 
After finishing this unit, you will be able to … 

 Describe the work flow that your computer takes, going from your Processing 
code, to a computer program running on your computer. 

 

How to Proceed 
 Read the unit content. 
 Have a Processing window open while you read, to follow along with the 

examples. 
 Do the sets of exercises in the Check your Understanding sections. 
 Re-check the Learning Objectives once done. 

  



 

Page 286 of 412 jimyoung.ca/learnToProgram © James Young, 2016 

 Introduction 
In this unit we learn about a concept called compiling, and how this relates to the 
Java Virtual Machine. That’s right – as we have learned, Processing is just Java, so 
it uses Java under the hood. 

Although you do not do any programming in this chapter, this information is very 
important. Understanding what is happening under the hood of a computer is crucial 
foundational information for understanding computer programming. As you continue 
through your Computer Science career, you’ll continue to fill out this knowledge. For 
now, let’s learn a little more about the relationship between what you type in your 
Processing window, and, what the computer needs to be able to run your program. 

 Compiling 
A fundamental problem facing computer programmers is that computers can only 
understand binary – a language of 1s and 0s. Here is a binary message, can you 
understand it? 

In this case, this binary code represents text, and is encoded as ASCII (see Unit 8). 
It gets even worse if we are trying to tell the computer to do things like light up a pixel 
or listen to the mouse. 

Clearly, humans are not good at understanding binary. So, we invented computer 
programming languages, like Processing, which humans can use and understand 
more easily. Unfortunately, just as you cannot understand the binary above, the 
computer actually cannot understand the processing which is designed for people to 
read.  

A special tool is needed to convert between the human-readable computer code, 
and the binary machine language, so that the computer can read, and execute, our 
program. Such a program is called a compiler: a compiler converts human-
readable computer code into machine language. 

01010100011010000110010100100000011000110110100001101001011
00011011010110110010101101110001000000110100101110011001000
00011101000110100001100101001000000110111101101110011011000
11110010010000001100001011011100110100101101101011000010110
11000010000001110111011001010010000001100101011000010111010
00010000001100010011001010110011001101111011100100110010100
10000001101001011101000010011101110011001000000110001001101
11101110010011011100010000001100001011011100110010000100000
01100001011001100111010001100101011100100010000001101001011
10100001001110111001100100000011001000110010101100001011001
00 



 

Page 287 of 412 jimyoung.ca/learnToProgram © James Young, 2016 

Without a compiler, the computer 
cannot understand what it should do. 

Advanced: You may have heard of 
computer languages that do not need to 
be compiled, these are called 
interpreted languages. Instead of 
looking at a whole program, and 
compiling it in one go to machine 
language, interpreted programs 
generally convert one instruction or 
command at a time. This is very slow, 
but has some advantages; it can be 
more flexible, can potentially handle 
errors more gracefully, and often lets 
people write one-line computer 
programs to do small jobs. 

When you click on the run button (or press CTRL-R) in Processing, it automatically 
compiles and runs your program for you. If you go to basic Java, depending on the 
IDE, you will generally have to do this in two steps – compile first, and, if that was 
successful, you can then run it. In Processing, the compiled file is hidden from you 
and stored in a temporary system directory; you can’t find it without a little digging. 

One nice thing about compiling is that, once it is done, you do not need to re-compile 
a program to run it again. You compile a program once, and then run it as often as 
you want. When you purchase or download software, it is generally already compiled, 
and you do not have access to the original human-readable source code. 

 Machine Differences 
The idea of compiling seems pretty straight forward, but it ends up being highly 
complicated by the fact that different machines can speak dramatically different 
languages. That is, there is not one single machine language, but a whole range of 
them. Different chips, different generations, different manufacturers, and even 
sometimes different configurations of the same stuff, can result in differences in the 
required machine language. Different operating systems also are setup uniquely and 
so require different machine language to work well with them. 

Clear examples of this in daily life are Windows-based and Mac-based machines, 
they speak different languages, or Android and Apple-based phones, which also 
speak different languages again. It gets even more complicated in the industrial and 
commercial world, as computer servers, embedded systems and controllers, custom 
hardware, etc., can all speak different languages. 



 

Page 288 of 412 jimyoung.ca/learnToProgram © James Young, 2016 

The unfortunate solution to this problem is to have a wide range of compilers. Given 
one simple human-readable computer program, you need a whole range of 
compilers, one to target each machine you want your program to run on, since we 
need different versions of the machine language to get it to run on each machine. 
Consider the following graphic: 

 

To make things worse, each compiler and each language has its own quirks, so 
compiling your program for a new machine is almost never as simply as swapping 
out the compiler. Some things work differently, some features are missing, and so 
you need to do major changes to your program. For this reason, Mac and Windows 
version of the same software can be quite different, and may not even be released 
at the same time. This is such a big job that many companies only target one 
machine line. 

To make things worse, this situation does not scale well at all. If you have a new 
machine (say, a new version of iPhone, or a new competitor), you not only need a 
new compiler, but every single program you want to run on the individual 
machine needs to be painstakingly re-compiled and modified to target the new 
machine. This is a huge endeavor. 

This ended up being a huge problem, particularly for business. Imagine you are a 
company with a very expensive web server running your software. One day, your 
server breaks, and you go shopping for a new one. Since the last purchase, the 
landscape has changed considerably, and you can now get a machine with 10x the 
computing power for half the price from a competitor – oh, but there’s a downside, 
as the new machine speaks a different machine language. Your entire software 



 

Page 289 of 412 jimyoung.ca/learnToProgram © James Young, 2016 

library needs to be re-compiled to target this new machine, which greatly complicates 
the situation. There must be a better way! 

 Virtual Machines 
There is a clever solution to the above problem, which takes a minute to wrap your 
head around. Instead of using a compiler to target a specific machine language, such 
as your PC or iPhone, Computer Scientists have developed a theoretical virtual 
machine: a machine with a very clearly-defined and well-documented machine 
language, and on that acts extremely predictably given some code to run. The 
downside? This virtual machine doesn’t actually exist as a physical device, its 
fake! 

So, given some human-readable computer code, we use a virtual machine compiler 
to convert it to virtual machine language. 

This seems a little crazy – why go through all this work creating machine language 
for a virtual machine, which doesn’t exist? Why would we do this? 

It turns out that, since the virtual machine is so well specified, we can create a 
program to emulate a virtual machine. We make a new program called a virtual 
machine that reads virtual machine language, and converts is on-the-fly to real 
machine language to run on our machine. If we do a good job at this, then our 
virtual machine can run any program that has been compiled to virtual machine 
language. 

Java works like this. When you compile your program, it actually converts it first to 
Java’s virtual machine language (which they call byte code), and saves that. Then, 



 

Page 290 of 412 jimyoung.ca/learnToProgram © James Young, 2016 

when you want to run your program, it starts up a Java Virtual Machine for your 
computer, and runs your program. 

In Processing, when you click your run button, all of this happens invisibly to you. It 
compiles your program to Java byte code (virtual machine language), starts up a 
Java Virtual Machine on your computer, and tells that machine to run your byte code. 

You may have noticed some time that you had to install a Java Virtual Machine (often 
packaged as a JRE, Java Runtime Environment, with a lot of other goodies) before 
to get programs to run. Luckily, Processing comes packaged with one installed with 
it, so you don’t have to mess with it. 

Java has virtual machine programs, or emulators, for a very broad range of platforms. 
If you have a Java program, all that you need to do to get it to run on a new machine 
is to ensure it has a Java Virtual Machine installed. In this class, you may have seen 
this first-hand, if you share a Processing program between Windows, Mac, or Linux 
machines. Processing even has Android and iOS versions. 

This solution is extremely scalable. Going back to our earlier business example: if 
the business wrote their entire library in Java, changing to a new machine should be 
seamless, assuming that the new machine has a Java Virtual Machine available. 
When new hardware is introduced, such as a new type of cell phone, if someone 
writes a good Java Virtual Machine, then most existing Java programs should work 
seamlessly (assuming the machines have similar capabilities). There is no need to 
re-compile and tweak them! This is a good idea! 

Virtual Machines do have some downsides. It can take a lot of extra time to start a 



 

Page 291 of 412 jimyoung.ca/learnToProgram © James Young, 2016 

program, as the computer needs to fire up a virtual machine, and toss your program 
to it. Virtual machines can also be slow, since it needs to convert from the pre-
compiled virtual-machine code to the specific machine code. Finally, all of this can 
take more memory than traditional programs. Because of these reasons, 
performance-based software has been slow to adopt the virtual machine model. 
However, this is now changing. Very smart compilers and clever techniques such as 
Just-in-time compiling have made major improvements to the performance of Java 
programs, and so more and more performance computing is being done in such 
languages. 

Finally, Java is not the only language to use this model, as the idea is growing. One 
popular framework that you may have heard of is Microsoft’s .NET libraries, which 
works heavily on the same principle – however, Microsoft’s focus has been more on 
very powerful functionality, where Java has been more about extreme cross-platform 
capability.  

 Processing and Virtual Machines 
Most of this chapter has been about Java, not Processing – where does Processing 
fit in? 

For Processing, there is just one extra step: Processing has its own compiler step 
that converts your Processing program to Java first. Then, all the above happens as 
normal: 

 Overview and Terminology 
The final piece to cover is just to overview the entire process and to cover some of 



 

Page 292 of 412 jimyoung.ca/learnToProgram © James Young, 2016 

the common vocabulary. As shown in the following graphic, we start with our 
Processing file, often called the source code. This gets converted to Java with the 
Processing compiler, which then gets converted to Java byte-code (virtual machine 
language) with the Java compiler. At this point, the computer stores this byte code 
in a special file called a .class file. If you have worked in Java, or poke around the 
secret Processing temporary folders, you can find this for your program! Then, 
this .class file is passed to a targeted virtual machine specific for your computer, 
and run. 

 

 Check Your Understanding: Exercises 

 Using Wikipedia, look up the article for the Java Virtual Machine. 
This is often shortened to the JVM. We saw above the JRE. What is the JDK? 
 

 Also using Wikipedia, look up Just In Time compilation (it has its own 
page).  

Check your Understanding 

CuSn 

CuSn 



 

Page 293 of 412 jimyoung.ca/learnToProgram © James Young, 2016 

a. What is it? 
b. What are two benefits? 
c. What are two drawbacks? 

 People have really strong opinions about whether the Virtual 
Machine scheme used by Java is a good or bad thing. Do a google for “is java 
faster than c++”, where c++ is a fast, traditionally-compiled program, to see the 
kinds of discussions people are having on this. Who is right? 
 

 If compiling is the process of moving from human-readable code 
toward machine code, what is the reverse process? Can you take your favorite 
game, de-compile it, and modify it? Apart from the legal ramifications (this is 
illegal in some places), is this a good idea?  

a. Find the Wikipedia page on decompiler. Give it a quick read – does 
this look like an easy topic? Also, read the legality section. 

b. This falls under the larger umbrella of reverse engineering, which also 
has its own Wikipedia page. In addition to computer code, what other 
technologies are people reverse engineering? 

 For the truly adventurous, you can look a little deeper at the 
compilation process in Processing. If you look inside the Processing main folder, 
you will see a program called processing-java. Open a command window 
here (the console in Windows, or terminal on a Mac or Linux), and run the 
program. Can you figure out how to use that program yourself to compile your 
Processing Sketch 

a. Also notice that there is a java folder. Inside there, go into the bin 
folder (bin stands for binary, which means compiled programs). You 
will see a series of programs that help Java do its work, including java 
(Java Virtual Machine). If you become an expert Java programmer you 
will become very familiar with these tools. 

 

 

 

 

Learning Objectives 

How did you do? Go back to the beginning of the unit and check how you measure 
up to the learning objectives. 

 

How did you do? 

Au 

Ag 

CuSn 



 

Page 294 of 412 jimyoung.ca/learnToProgram © James Young, 2016 

(page intentionally left blank)  


