
INTRODUCTION TO PROGRAMMING – INSTRUCTOR MANUAL 

Introduction and the Processing Approach 

While this course is taught using the Processing IDE and language, teaching Processing 
to students is fundamentally the same as teaching any other Programming language. 
The educational goals by the end of the course are essentially the same as many 
introductory courses: students learn the basic tools (conditionals, loops, arrays, 
functions), and learn how to solve problems with them. 

The primary shift that instructors will find with this course is that there is a large de-
emphasis on String processing. Many text-books and courses spend a great deal of time 
on getting textual input from a user (usually in the form of prompt, full-line input), 
validating the input (generally with a fragile while loop), parsing that input (often with 
arbitrary, language-specific APIs such as substring, string searching, or tokenizing), 
and then formatting text output for a console. From a pedagogical perspective, such 
operations are useful for a student to learn how to work with raw data and a given set 
of tools to solve a goal. However, there are several limitations: 

- Students must memorize complex APIs (e.g., Scanner.hasNext, String.indexOf) 
that often include concepts they have not yet learned, while they are still trying to 
learn the basics about variables, syntax, etc.; 

- These are language dependent, and experienced programmers will look up the 
particular APIs as needed anyway; 

- There are better, more robust tools for String processing that professionals 
generally use; 

- The dialog model of pausing a program to get a single line of input from a user is 
dated. Very few instances of this exist on modern computing platforms, so it is more 
difficult for the students to relate to the work they are doing; 

- Formatting fixed-width text output is a highly dated problem, relegated primarily 
to command-line tools, further making it difficult for students to relate to the work; 



- The token-wrangling benefits gained from such String tasks can be analogously 
learned when working with arrays. 

 

As such, while Strings and characters are covered in the course, they are primarily for 
basic operations only. 

The second big shift that instructors will notice is that students learn state machine 
management. While this is not taught explicitly in the course, Processing is setup such 
that the primary program calls a draw function that is called on a timer, defaulting to 
60 times a second. A component of problems that students solve is to, each time they 
draw, to evaluate the current state of the program, update the state, and then draw. 
When making an interactive program that reads the mouse or keyboard, this state 
management is non-trivial. 

Although Processing is graphics based, the mathematics and geometry used has been 
kept to a minimum. Students may have to refresh their basic sine and cosine 
trigonometry (grade 9 level) to go from polar to Cartesian coordinates (given an angle 
and a radius, what is the x, y). In addition, students may struggle slightly with the 
spatial nature of some problems, although there are only a few basic templates that get 
re-used throughout the course. 

Instructors will notice a shift from the classic input->process->output model that has 
generally been used to teach computer science, toward an interactive system model 
where the beginning and end are less well defined, and the main problem is managing 
real time input. There is an argument that the latter is much more reflective of modern 
computer programming. Any interactive system (desktop application, tablet or smart 
phone application), network application, robot system, etc., fall more in line with the 
event-driven and state management model, and the instances in computing of the 
classic command-line input->process->output are dwindling.  

While this sounds complex, in reality instructors will find that teaching the course is 
essentially the same as before, except with less frustrating String syntax, and more 
engaging results. 



Pedagogical Approach 

This course is designed to teach students programming through extensive practice. 
Programming is something that cannot be learned from reading and observation only, 
and must be practiced, similar to learning a musical instrument- you can read sheet 
music all you want, but it won’t help you learn to play it on a piano. As such, there are 
assignments that have significant grading weight, to encourage students to get their 
hands dirty with real problems. 

For evaluation, most of the marks are encompassed in the course’s exam components. 
There are several reasons for this. One, this is a purely individual exercise, whereas 
programming assignments can be collaborative, or can benefit from on-line help. Two, 
exams provide an opportunity to probe a student’s deep reaches of material 
understanding, that they should have gained through practice, but can be hard to 
include in a programming assignment. 

To support the practice model of learning, each unit has a large number of exercises 
that students should practice. The book conveys the importance of doing these exercises. 
Further, each exercise is marked in difficulty, as either Bronze, Silver, or Gold, and 
students are told that they can use the exercises to gauge their own understanding of 
the material. To pass the course they should be comfortable with the Bronze exercises. 
If they expect a B, they should be doing the silver exercises. A students should be 
working through many of the gold exercises. 

In general, it is not recommended to post or share solutions to the exercises. These 
should be seen as an engagement opportunity, where students can engage the instructor 
or each other to work through bugs. Getting stuck on a bug, and going back and 
reviewing, is an extremely effective learning method. Conversely, when provided with 
sample solutions, students often peek at it and see it as a reasonable solution, without 
necessarily understanding the nuances behind each aspect. 

 

 



Tour of the Materials 

A collection of 19 Units have been provided for students, covering the range of topics in 
the course. Pre-Midterm generally goes up until Unit 11 (just before loops), with the 
remainder for the final. 

The units cover every aspect of the course, including downloading and starting the 
required software. 

Each unit targets a specific programming concept, and the provided material will fully 
explain the concept to the student and work through several examples, in addition to 
providing do-yourself exercises. 

 

Getting Started 

The best way for an instructor to get started is to download and install Processing, and 
to work through the examples at the end of each chapter. Instructors can expect that 
student questions and problems will fall in line with what they have seen previously, in 
regular Java. For example, struggling with a nested loop or boolean logic, and less on 
the geometry and graphics. 

 


	Introduction to Programming – Instructor Manual

