

Page 87 of 412 © James Young, 2015

 USER-DEFINED FUNCTIONS PART 1

Summary
Here we learn a generalized extension of making your own named code blocks, like
the draw and setup block. This is not actually a hard unit, but is a little lengthy
because of the code examples. You will learn to make your own commands. In this
section, you will…

 Lean about user-defined functions and how they form part of a program.
 Learn how user-defined functions help you make larger programs that are more

manageable.
 See how user-defined functions complicate variable scope rules.
 Learn about how user-defined functions can call each other, to further simplify

your programs.
 Learn a technique called top-down programming to help you attack difficult

problems

Learning Objectives
After finishing this unit, you will be able to …

 Create your own user-defined functions.
 Use your custom functions within other functions.
 Use your custom functions to avoid repeating code.
 Apply the top-down technique to solve problems.

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 88 of 412 © James Young, 2015

 Introduction
As your programs get larger and larger, and more complex,
you (very!) soon reach the limit of the human brain to keep it
all organized and effective. While some people believe that
they are good enough to keep their programs in one big long
block (like ours so far), there is a lot of research that says
they’re wrong, and highlights the benefits of taking a more
structured approach to programming. In addition, you will find
yourself repeating the same code over and over again. We
need to learn new techniques that help us manage our larger programs, organize
them, and re-use code whenever possible to save work. Enter user-defined
functions! To be clear, you are the user here, who will be defining your own functions.

User-defined functions are a way to create your own commands. So far, you have
used many commands like rect, ellipse, and so on. Actually, in the last unit you
learned how to make functions when you made your draw and setup block. User-
defined functions is just a simple but powerful extension of what you already learned.

Advanced: You may hear about functions, procedures, subroutines, or methods,
which all refer to a very similar concept. To make things more confusing, there isn’t
always perfect agreement on what they mean. The most important difference is
between methods and functions, procedures, or subroutines. Methods are
specifically functions that are linked to an object, which ends up giving it special
properties. Other things you may hear include functions returning (providing) data
and procedures not returning data. At this point, don’t worry about these subtle
differences.

One of the largest programs we have actually written so far
is our good old cat face. Are you tired of it yet? Don’t worry,
we’re almost done with it. If we look at the cat face example,
not only do we notice that the draw block gets really long, but
also that it breaks down nicely into clear units of work. These
units include drawing a head, eyes, ears, etc.

Here is the whole code again.

/*******************
 * Cat Face! Draw a cat face on the screen
 * author: Teo the dog
 * version: try #awesome
 * purpose: to show how a cat can be drawn
 ********************/

Professional projects
can be hundreds of
thousands or even
millions of lines long.

I have opinions about
cat faces, but probably
shouldn’t share them
publicly...

Page 89 of 412 © James Young, 2015

// variables
int headCenterX = 250;
int headCenterY = 250;
int noseSize = 30;
int pupilWidth = 15;
int noseCenterX = headCenterX;
int noseCenterY = headCenterY+50;

void setup()
{
 size(500, 500); // make a 500x500 canvas
}

void draw()
{
 background(0);
 // copy the mouse position into the nose position
 noseCenterX = mouseX;
 noseCenterY = mouseY;

 //draw the head
 ellipse(headCenterX, headCenterY, 300, 300);

 //draw the ears
 triangle(headCenterX+125, headCenterY-170,
 headCenterX+50, headCenterY-100,
 headCenterX+150, headCenterY-50);
 triangle(headCenterX-125, headCenterY-170,
 headCenterX-50, headCenterY-100,
 headCenterX-150, headCenterY-50);

 //draw the eyes
 ellipse(headCenterX-75, headCenterY-25,
 pupilWidth*4, pupilWidth*2); // left eye
 ellipse(headCenterX-75, headCenterY-25,
 pupilWidth, pupilWidth*2);
 ellipse(headCenterX+75, headCenterY-25,
 pupilWidth*4, pupilWidth*2); // right eye
 ellipse(headCenterX+75, headCenterY-25,
 pupilWidth, pupilWidth*2);

Page 90 of 412 © James Young, 2015

 //whiskers!
 line(noseCenterX, noseCenterY,

 noseCenterX-50, noseCenterY-25);
 line(noseCenterX, noseCenterY,

 noseCenterX+50, noseCenterY-25);
 line(noseCenterX, noseCenterY,

 noseCenterX-60, noseCenterY);
 line(noseCenterX, noseCenterY,

 noseCenterX+60, noseCenterY);
 line(noseCenterX, noseCenterY,

 noseCenterX-50, noseCenterY+25);
 line(noseCenterX, noseCenterY,

 noseCenterX+50, noseCenterY+25);

 // draw the nose after whiskers for nice overlap effect
 ellipse(noseCenterX, noseCenterY, noseSize, noseSize);

}

Now, let’s imagine that we had new commands for all the components of the cat face.
We could really simplify the draw block if we used these commands. To be clear, at
this point I am just making up hypothetical command names – this code will not run.

If this worked it would have a great deal of benefit. One, it enables us to see an

void draw()
{
 background(0);
 // copy the mouse position into the nose position
 noseCenterX = mouseX;
 noseCenterY = mouseY;
 drawCatHead();
 drawCatEars();
 drawCatEyes();
 drawCatWhiskers();
 // draw the nose after whiskers for nice overlap effect
 drawCatNose();
}

Page 91 of 412 © James Young, 2015

overview of the draw block without scrolling through pages. Two, we have a lot fewer
comments! Since we have the command names, it is obvious what we are doing.
The only comment left explains the nose / whiskers draw order. At this point, we
assume that the code that actually does the work – the lines, ellipses, etc. is
somewhere else.

But how can we create such commands? We need to learn the new syntax!

 Basic Functions: Syntax
Luckily for us, you have already learned the syntax to create a new function – you
did this for the draw and setup blocks.

To create a new function (a new command) we need two basic things:

 function name: they keyword used to invoke (use) the function. E.g., ellipse
is a function name

 some code: the processing code to run every time the function is invoked (called).

With this in hand, we can create a new function using the following syntax:

The void keyword means that the function does not create any data result, and the
empty brackets () means the function does not require any data to run. We will learn
more about that later in the course.

Look familiar? See? We already learned the syntax. The main difference between
our existing draw and setup commands, and these new user-defined functions, is
that draw and setup already have defined roles, and Processing knows when to use
them. Your new commands will not be used at all until you do it yourself!

The first line, which currently starts with void, is called the function header. The
function block is called the function body.

You must put this code outside of your startup and draw blocks, along with
your globals. You can place them before or after those blocks, it’s up to you and
ends up being a matter of style. If you try to put them inside an existing function, it
will not work.

Whatever we put as functionName we then can use in our program to run the
command. For example, the following is a perfectly valid user-defined function to
draw a centered circle that takes up half the screen:

void functionName()
{
 …//code;
}

Page 92 of 412 © James Young, 2015

But now that we’ve created this command, how can we use it? Simple: we just use
it like any other command, by typing its name with brackets. In this case:

To be clear, here is how the whole program may look.

You can call your new drawCircle command from anywhere, and as often as you
like. From the perspective of the draw block, this is just another command just like
line, ellipse, etc.

Now, let’s go back and look at the cat example from the beginning of this unit. We
already have the draw block made with hypothetical commands. To finish the
example, we can create the new commands and copy the code over. The only thing
to consider is that your new functions can work with the global variables exactly like

void drawCenteredCircle()
{
 int canvasSize = 500; // should be in a global!
 int circleSize = canvasSize/2;
 ellipse(canvasSize/2, canvasSize/2,

 circleSize, circleSize);
}

drawCenteredCircle();

void drawCircle()
{
 int canvasSize = 500; // should be in a global!
 int circleSize = canvasSize/2;
 ellipse(canvasSize/2, canvasSize/2,

 circleSize, circleSize);
}

void setup()
{
 size(500,500);
}

void draw()
{
 drawCircle();
}

Page 93 of 412 © James Young, 2015

the draw and setup block. That is, nothing has changed. Try it yourself before looking
at the solution posted here.

/*******************
 * Cat Face! Draw a cat face on the screen
 * author: Teo the dog
 * version: try #awesome
 * purpose: to show how a cat can be drawn
 ********************/

// variables
int headCenterX = 250;
int headCenterY = 250;
int noseSize = 30;
int pupilWidth = 15;
int noseCenterX = headCenterX;
int noseCenterY = headCenterY+50;

void setup()
{
 size(500, 500); // make a 500x500 canvas
}

void drawCatHead()
{
 ellipse(headCenterX, headCenterY, 300, 300);
}

void drawCatEars()
{
 triangle(headCenterX+125, headCenterY-170,
 headCenterX+50, headCenterY-100,
 headCenterX+150, headCenterY-50);
 triangle(headCenterX-125, headCenterY-170,
 headCenterX-50, headCenterY-100,
 headCenterX-150, headCenterY-50);
}

void drawCatEyes()
{

Page 94 of 412 © James Young, 2015

 ellipse(headCenterX-75, headCenterY-25,
 pupilWidth*4, pupilWidth*2); // left eye
 ellipse(headCenterX-75, headCenterY-25,
 pupilWidth, pupilWidth*2);
 ellipse(headCenterX+75, headCenterY-25,
 pupilWidth*4, pupilWidth*2); // right eye
 ellipse(headCenterX+75, headCenterY-25,
 pupilWidth, pupilWidth*2);
}

void drawCatWhiskers()
{
 line(noseCenterX, noseCenterY,
 noseCenterX-50, noseCenterY-25);
 line(noseCenterX, noseCenterY,
 noseCenterX+50, noseCenterY-25);
 line(noseCenterX, noseCenterY,
 noseCenterX-60, noseCenterY);
 line(noseCenterX, noseCenterY,
 noseCenterX+60, noseCenterY);
 line(noseCenterX, noseCenterY,
 noseCenterX-50, noseCenterY+25);
 line(noseCenterX, noseCenterY,
 noseCenterX+50, noseCenterY+25);
}

void drawCatNose()
{
 ellipse(noseCenterX, noseCenterY, noseSize, noseSize);
}

void draw()
{
 background(0);
 // copy the mouse position into the nose position
 noseCenterX = mouseX;
 noseCenterY = mouseY;
 drawCatHead();
 drawCatEars();
 drawCatEyes();

Page 95 of 412 © James Young, 2015

The first thing you may notice is that this change actually made the program longer!
That is okay, because each piece that you will work on at any given time is now
smaller. Each function or the draw block is itself very small and easy to manage.

 Functions and Code Execution Order
Something that often trips up people here is the concept that Processing jumps
around while running your code. Previously, it always ran top to bottom within your
draw block. Now, when it sees your new command, it pauses the draw block, jumps
to your new command, does all of that, then jumps back. Within the draw block you
still read it top to bottom, but you need to understand that it jumps out every time a
command is run. The same actually happens, e.g., when the command
background is run, but since we didn’t write that command, we don’t think about it.

The flow of the program is exactly unchanged from what we learned in the previous
Unit. First, Processing creates and initializes the global variables. Second, it runs the
setup block. Third, it runs the draw block. The change now, is that the draw block
itself can run your new commands. What exactly happens when your command
is run?

 1) draw block is paused
 2) your command is completely run, top to bottom
 3) draw block is resumed where it left off.

Let’s look at the cat face draw block.

 drawCatWhiskers();
 // draw the nose after whiskers for nice overlap effect
 drawCatNose();
}

void draw()
{
 background(0);
 // copy the mouse position into the nose position
 noseCenterX = mouseX;
 noseCenterY = mouseY;
 drawCatHead();
 drawCatEars();
 drawCatEyes();
 drawCatWhiskers();
 // draw the nose after whiskers for nice overlap effect
 drawCatNose();

Page 96 of 412 © James Young, 2015

When this starts, everything happens as expected. The background is cleared to
black, the comment is ignored, and the mouse position is copied into the nose
position. However, when the drawCatHead() command is encountered, the draw
block pauses where it is

And jumps off to call the drawCatHead code

When this is complete, the draw block un-pauses, and continues where it left off.
Then it encounters the drawCatEars command, pauses again, jumps to execute
the code, etc.

Important: You should start developing your ability to trace through code this
way, to understand what happens at what spot, what pauses, where it jumps
to, etc. This will be crucial to completing your assignments and exams as the
course progresses.

 Functions Calling Other Functions
I said earlier that you can call your user-defined functions from anywhere that you
would use any other command. Until now, that meant inside the setup and draw
blocks only. Now that you have other blocks with your own functions, you may

}

void draw()
{
 background(0);
 // copy the mouse position into the noseposition
 noseCenterX = mouseX;
 noseCenterY = mouseY;
 drawCatHead();
 drawCatEars();
 drawCatEyes();
 drawCatWhiskers();
 // draw the nose after whiskers for nice overlap effect
 drawCatNose();
}

void drawCatHead()
{
 ellipse(headCenterX, headCenterY, 300, 300);
}

PAUSED

Page 97 of 412 © James Young, 2015

wonder if you can call other commands within those. Well, you definitely can! In fact,
we could imagine that our cat face draw block could be simplified even further. We
can take all the commands that draw the components of the cat face, and wrap them
in another function called drawCatFace as follows:

Then, the draw block is simplified even further:

This makes sense, for example, if you were going to draw a lot of animals. Now the
draw block is clean and simple and leaves room for more code.

In this case, the pausing and jumping works as you may expect, it cascades.

 draw block runs
 draw block pauses at drawCatFace, and jumps to the function
 drawCatFace runs. Then pauses at drawCatHead and jumps to the function
 drawCatHead is completely executed, and jumps back
 drawCatFace un-pauses, then pauses again at drawCatEars, and jumps to

the function.
 Etc...
 draw block un-pauses when drawCatFace is complete and continues.

Advanced: Can user-defined function call themselves? Or, can a call b, which then
calls a, making a loop? YES. This is called recursion, a topic we do not cover properly
in this course. Recursion is difficult, and you should avoid it in this course in general,

void drawCatFace()
{
 drawCatHead();
 drawCatEars();
 drawCatEyes();
 drawCatWhiskers();
 // draw the nose after whiskers for nice overlap effect
 drawCatNose();
}

void draw()
{
 background(0);
 // copy the mouse position into the nose position
 noseCenterX = mouseX;
 noseCenterY = mouseY;
 drawCatFace();
}

Page 98 of 412 © James Young, 2015

as it is very easy to get wrong. In fact, with recursion done incorrectly, you can crash
Processing and lose your work. Save often!

 Functions and Scope
Remember from our earlier discussions that scope is the range within which a
variable exists. Outside of that scope, you cannot access or work with that variable.
In general, any time we have a block we have scoping rules. There is no
exception here with functions, and in fact, you’ll find that the scoping matches the
rules you learned when we started active processing.

Since functions have their own code block, then each function has its own isolated
variable scope. For example, the following code does not work:

Although you create a variable called location, and it is set before the
drawCircle command is called, inside the drawCircle function the location
variable is out of scope – it cannot see it. Processing will not run this code, saying
that it cannot find the variable. Again, this is just what we already learned with the
draw and setup blocks. How do you fix this? Make the variable global.

What about having the same variable name in multiple functions? What happens
then?

void drawCircle()
{
 ellipse(location,location,5,5);
}

void draw()
{
 int location = 10;
 drawCircle();
}

void drawCircle()
{
 int location = 15;
 ellipse(location,location,5,5);
}

void draw()
{
 int location = 10;

Page 99 of 412 © James Young, 2015

variables in different scopes can have the same name, but they do not share data –
they are completely separate. Again, this is the same as we learned earlier. In this
case, although they have the same name, to the computer, they are different
variables.

One last thing: variables within a function are called local variables

 Reusing code
I promised at the beginning of this unit that user-defined functions help you to re-use
code. Let’s quickly look at an example of how this may work. What if we wanted to
have a mutant cat – one with two noses! Since
we already have the code to draw a cat nose, it
would be great if we could somehow re-use that
to draw a second nose. Luckily, our example is
setup to help make this easy.

There are two keys to seeing how this may
work. One is realizing that we can use our user-
defined functions again and again. Two, is
remembering that our nose code uses global
variables, noseCenterX and noseCenterY,
to determine where to draw the nose. So our
strategy is simple:

 set some desired spacing between the
noses, and save it in a global variable

 set the nose center variables to the left or right nose, and call our nose and
whisker drawing functions

 change the nose center variables, and re-call the same functions

And it works! Here is my new drawCatFace code. Of course, the draw block no
longer copies the mouse location into the nose variables.

 drawCircle();
}

void drawCatFace()
{
 drawCatHead();
 drawCatEars();
 drawCatEyes();

 // draw nose and whiskers 1
 noseCenterX = mouseX - NOSE_SPACING/2;

Page 100 of 412 © James Young, 2015

By putting that code into our user-defined functions, we were able to re-use it very
simply. Now, if we find a bug in the nose or whisker code, and we fix it, it’s fixed for
both noses! We don’t have to change the code in just one spot. As an exercise, it
may be interesting to go back and modify the original cat face without functions, to
have two noses, to see how messy it becomes.

 Top Down Programming
Perhaps the biggest advantage of being able to make you own functions is the ability
to break your program into smaller pieces as you see fit, to simplify your problem.
This is perhaps the single most useful thing you will use in programming, the ability
to take ridiculously hard problems (like, make the newest flashy video game) and
organize it so that you can focus on one small piece at a time (like, draw a cat eye
or move a nose). This approach to programing will continue throughout the degree,
through Object Oriented Programming, data structures, algorithms, and so forth –
basically, we (as humans!) are not that smart and need to develop better tools and
techniques to make us smarter.

Now that you can make your own commands, you can learn a common technique
for helping to simplify your programming job, called top-down programming. Simply
put, top-down programming is where you first look at the overall problem to be solved,
and slowly break it down into smaller and smaller chunks until you have something
you can code up. For example, a top-down approach to the cat face example is to
first define the high level structure: the cat has a face, eyes, ears, and a nose. Then,
we start to think about how to do each of those parts. For example, a nose has
whiskers and a circle. Finally, we write the code to make those parts.

Alternatively, a bottom-up approach is the opposite: we start by building robust
pieces that do specific jobs, and then connect them together to solve problems. Lego
is generally done bottom-up – you start with simple blocks and start building it into
something, without necessarily having an overall plan.

 noseCenterY = mouseY;
 drawCatWhiskers();
 // draw the nose after whiskers for nice overlap effect
 drawCatNose();

 // draw nose and whiskers 2
 noseCenterX = mouseX + NOSE_SPACING/2;
 drawCatWhiskers();
 // draw the nose after whiskers for nice overlap effect
 drawCatNose();
}

Page 101 of 412 © James Young, 2015

In the real world, there are benefits and problems associated with both styles. You
will find yourself going back and forth depending where you are in a project, or which
actual problem you are solving.

For this course, you learn top-down programming as a means of helping you
take a problem that may be somewhat overwhelming, and break it down into
chunks until those chunks are manageable.

You will get a lot of practice with this throughout the course,
and I strongly recommend you use this approach when you
feel overwhelmed. We will go through a toy example with
somewhat simple code for illustration purposes.

We will make a program that has a planet moving around the
screen. It will do a few things: move toward the mouse, with
some friction to slow it down, and move in a repeating
horizontal orbit from left to right. The planet itself is a
circle with a line through it. There is a lot happening
here, so it can be helpful to use top-down programming
to simplify the problem. The general approach to the
problem will be to calculate the desired move, do the
move, and draw it.

We will approach this with four steps:

1. Write the program as a series of steps in comments,
in English.

2. Turn each step into a function name (command)
3. Create empty functions
4. Start implementing the functions

(Step 1) Using top-down programming, first we plan the steps of the program in
English and make sure it makes sense on that level. Here is an example of what our
English version may look like.

 Clear the background to black
 Calculate the attraction to the mouse
 Add friction
 Update the orbit
 Move the planet based on the calculated move
 Draw the planet.

Whew! Did I miss anything? Point: We are thinking through our program without
doing any computer programming at all. We are just planning things out and listing
the tasks that need to happen. The next step is to toss all of this list into our
Processing program (as comments!) and convert them to function calls.

I really like top-down
approaches since I’m
the Alpha dog.

Page 102 of 412 © James Young, 2015

(Step 2) Wouldn’t it be nice if we could simply convert this into commands and have
it work? Imagine that you could simply take our above list and generate:

In fact, this is what user defined functions are all about. We can think about the
program abstractly, from a high level. We determine what needs to be done in
English first (often in comments). We turn the comments into new commands. We
then create those commands: for each command, we only focus on a narrow
problem. For example, in attractToMouse() we don’t worry about drawing or the
orbit, just the calculation to move the planet to the mouse.

(Step 3) We next just implement empty functions, to make the skeleton of the
program. Once we are done this, the program should run – but nothing will happen.

void draw()
{
 background(0);
 attractToMouse();
 addFriction();
 updateOrbit();
 movePlanet();
 drawPlanet();
}

void attractToMouse()
{
}

void addFriction()
{
}

void updateOrbit()
{
}

void movePlanet()
{
}

void drawPlanet()
{

Page 103 of 412 © James Young, 2015

Just to re-cap, by this point, we have invented a bunch of functions that we think will
help us do our job, and wrote up those functions as empty stubs. We haven’t done
any actual problem solving yet.

(Step 4) Start implementing the functions. The nice thing about this approach is that
you can, for the most part, think about one problem at a time. Also, while you are
implementing a function you can develop the required global variables and constants.

Important: your initial functions may actually be a bad idea, and may not work.
Don’t be averse to re-factoring, that is, re-organizing your solution as you see
problems with it or see a better approach.

First, let’s do the easy one. Drawing the planet. We need to have global variables for
the planet position, since it will move around and we need to remember where it was
last time. We also need a global constant to specify the planet size:

With these globals, then we can draw the planet. The nice thing here is that we can
use the planet location variables and the size, and solve the basic geometry without
worrying about the other tasks. Here is my draw code, but try implementing by
yourself first.

Next, let’s attract to the mouse. All that this code does, is to determine what the move
would be to move the ball to the mouse. This should be a simple subtraction
calculation. However, we need new globals to store our guessed move. This is better
than modifying the planet position directly, since then we can scale our move (e.g.,
for friction!) by dividing it, before actually performing the move.

}

// main planet
final int PLANET_SIZE = 30;
int planetX = 0;
int planetY = 0;

void drawPlanet()
{
 ellipse(planetX, planetY, PLANET_SIZE, PLANET_SIZE);
 line(planetX-PLANET_SIZE/2, planetY,
 planetX+PLANET_SIZE/2, planetY);
}

// keep track of our calculated move
int planetMoveX = 0;

Page 104 of 412 © James Young, 2015

To do this, we just calculate how far the ball is from the mouse, and add it to the
planned move. As the risk of being repetitive, try to solve this problem only thinking
about the task at hand, and let yourself forget about the other tasks (like the orbit or
drawing). This is one of the key benefits of using user defined functions.

The next function in our list is to add friction to our calculation. There are a lot of
ways to add friction (some physically correct, and some not), but what we will do
is divide our planned move by some amount. This way, larger moves get cut more,
and smaller moves less. We need a global to store the friction amount

And to add the friction, we just divide the intended movement by our friction amount.

Now is a good time to do the move code. If we assume that the move variables are
correctly done, then we can just add the planned move to the planet location and
we’re done.

Now you should have a program that runs quite well, and a planet that approaches
the mouse as you move it around. To continue the program, you need to solve the

int planetMoveY = 0;

void attractToMouse()
{
 int diffX = mouseX - planetX;
 int diffY = mouseY - planetY;
 planetMoveX = planetMoveX + diffX;
 planetMoveY = planetMoveY + diffY;
}

final int FRICTION_DIV = 10;

void addFriction()
{
 planetMoveX = planetMoveX / FRICTION_DIV;
 planetMoveY = planetMoveY / FRICTION_DIV;
}

void movePlanet()
{
 planetX = planetX + planetMoveX;
 planetY = planetY + planetMoveY;
}

Page 105 of 412 © James Young, 2015

orbit problem. In this case, I recommend using a fixed orbit size, and using modulo
to make it loop when it gets too large. Try finishing this exercise on your own time.
Note: you may have to modify your drawing code to get this to work!

Again, to re-iterate the benefits of this approach, you have so far solved most of the
program without thinking about the orbit at all. This method enables you to focus in
on one small piece at a time, and solve the whole problem part by part. Top-down
programming:

1. Helps you focus on smaller problems and not be overwhelmed
2. Helps make self-commenting code, via descriptive function names
3. Helps you make a larger plan as you go

 Check your Understanding: Exercises

 Create a space ship shooting at an enemy (unfortunately, not
animated). Here is the draw and setup blocks.

int shipX = 0;
int shipY = 0;
void setup()
{
 size(500,500);
}

void draw()
{
 background(0);
 shipX = mouseX;
 shipY = mouseY;
 drawSpaceship();
 drawEnemy(); // above spaceship
 drawMissile(); // between ship and enemy
}

a. Implement the user-defined functions specified with your own solutions.
b. Can you make the bullet animate, moving from the spaceship to the

enemy, and repeating?

 The following program draws several “stars”. You can decide
yourself how to draw a star, but using two triangles (one upside own) is a good
way to do it.

Check your Understanding

CuSn

Ag

Ag

Page 106 of 412 © James Young, 2015

a. Make two global variables: starX an
starY that specify where to draw a
star.

b. Make a user-defined function that
draws a star at the globally-defined
location

c. In you draw loop, draw several stars
by alternately changing starX and
starY, and calling your function.
Also, draw one under the mouse.

 You will make a program that lets you draw fairly generic faces. You
will have functions to draw eyes, nose, mouth, and head, which use global
variables to determine their properties. Then you make other functions that
modify the globals and call your helper functions to make different faces. It is up
to you whether you take a bottom-up or top-down approach on this one.

a. Make global variables to specify all the parameters, e.g., head width
and height, eye width and height, pupil ratio, etc. You have some
flexibility here. Also, make variables for each item to specify where to
draw them.

b. Make user-defined functions that draw the parts using the global
variables.

c. Make two user-defined functions: drawNormalFace() and
drawSillyFace(). These set the proper global variables and use
your other user-defined functions to draw two different faces at two
different locations on the screen.

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

Au

