

Page 123 of 412 © James Young, 2015

 TEXT IN PROCESSING: BASIC STRINGS

Summary
Up until now in the course, all of your computation and variables have been using
numerical values. Here, we learn how to use text in processing.

In this section, you will…

 Learn how text is stored in Processing
 See ways to work with text, such as combining multiple segments into one, and

converting back and forth to numbers
 Learn how to put text to the console, and on the canvas.
 Learn about the difference between a chunk of text and a single character.
 See how to get the length of text, and how to extract specific characters

Learning Objectives
After finishing this unit, you will be able to …

 Create variables to store text data, called Strings
 Combine multiple Strings together
 Convert between Strings and numerical data
 Get the length of a String, as an integer
 Create a character variable
 Get a specific character out of a string, from a specific index.

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 124 of 412 © James Young, 2015

 Introduction
Until now in the course we have only been dealing with numerical data: integer and
floating point numbers. It is time to learn how we can work with text in Processing.

In computing, a piece of text is referred to as a string of characters, or a string for
short. To write a string (a piece of text) in processing, you encapsulate it in double
quotes as follows:

Make sure to use double quotes " (the shift plus single quote) not the single quote
‘ or ', or two single quotes ''. Processing takes everything from the first quote to
the last quote as verbatim text. If you try to put text without the quotes, Processing
tries to parse the text as programming commands and you’ll get an error.

While strings give you a lot of power (text is very important), they also introduce a
lot of problems. A lot of this stems from the fact that strings are a new kind of data.
Until now, all our data types are primitive types, those that just store one simple piece
of data. Strings are more complicated: they can have varying lengths, they can be
short or long, etc. Because of this, strings fall into a different category of data called
Objects. Objects are ways to encapsulate more complex kinds of data in easy
to use ways. Unfortunately, you often use Objects differently than regular primitives,
and even worse, different Objects are often used very differently. In this course, we
won’t learn Objects, but be aware of this as the reason why Strings can be so
different from time to time, and be assured that it gets easier as you learn computer
science (and Objects!)

The first difference is in the naming scheme. Unlike our primitive data types, Object
types should start with a capital letter. In this case, to make a new string variable:

Other than that you can use this like your other types so far. For example, you can
have combined declaration and instantiation:

The variables themselves are also usable in many ways like other variables, for
example, as above we can use it in our println statement:

println("hello world!");

String variableName;

String name = "Jim Young";

String name = "Jim Young";
println(name);

Page 125 of 412 © James Young, 2015

Many of the operations that we learned on numerical data (such as multiplication or
modulo) do not work on String data. Luckily, this makes sense: what does
multiplication mean with text? But, we have some new operators that we’ll see shortly.

This is a good time to introduce the empty string. This is the simplest string that
you can come up with, as it contains no information! (a little Zen?) Students
sometimes struggle with this, but we’ll get some practice with it. You specify an empty
string by putting two double quotes together like this:

If you print this out, as may be expected, you get nothing . You can think of this as
kind of a default, or starting value, for a string.

Advanced: how do you place a quote sign in a string? If you try to do it, it doesn’t
work, since Processing doesn’t know the difference between a quote to end the
string, and a quote as part of the string. The solution is to use what is called an
escape sequence, which is a command inside a string. There are many such
sequences, but the one we would use here is backslash quote. For example:

 Concatenating Strings
The word concatenate may sound complex, but all that
it means is to stick two things together. Concatenating
strings just takes two strings and combines them to
make one. For example, consider how silly the following
code is:

This is odd because if we
have the first and last
name, we should be able
to calculate the full name

without having to type it in again. We can do this using the concatenate operator. All
that you do, is put a plus sign (+) between two strings as follows:

I recommend that you try this to test it out. What is the output? Any problems? The

String empty = "";

String message = "Hi ¥"friend¥"";

String firstName = "Jim";
String lastName = "Young";
String fullName = "Jim Young";

String firstName = "Jim";
String lastName = "Young";
String fullName = firstName + lastName;
println(fullName);

Somehow concatenating
always makes me hungry

Page 126 of 412 © James Young, 2015

concatenation worked, but we got JimYoung as our output with no space between
them: Processing stuck them directly together. This I simple, because you can chain
the concatenation operations together. Just use more concatenation to add a space:

Concatenation is easy and scales up very intuitively. Let’s try making a Madlibs game.
Let’s take a template string and plug in words. Here is our template:

“<exclamation>! He said <adverb> as he jumped into his
convertible <noun> and drove off with his <adjective> partner.”

To convert this into processing, let’s first create the words as variables. In your own
case, select your own instances of words:

There is also shorthand concatenation. Commonly, just like with numbers, we do the
following kind of scenario to keep adding to a string:

and so on. In this case, we can use the += shorthand just like with numerical data:

It just saves a few keystrokes, but you’ll appreciate it in practice

 Graphical Text in Processing
So we can toss text to the console for testing, but how do we include it in our

String fullName = firstName + " " + lastName;

String exclamation = "smeg!";
String adverb = "happily";
String noun = "dog";
String adjective = "red";

// calculate our output text
String output = exclamation +"! He said "+adverb+

" as he jumped into his convertible " + noun +
" and drove off with his " + adjective + " partner.";

println(output);

String output = "";
output = output + exclamation;
output = output + "! He said";

output += exclamation;
output += "! He said";

Page 127 of 412 © James Young, 2015

graphical programs? We need some new commands.

For example,

Be careful, the x and y are the bottom left corner of the base
line of the graphical text, not the top left like with a rectangle.
Some text may go below this, e.g., a lowercase “g”.

You can set the color of the text using the same fill command
that you already know.

You can also set the size of the text in pixels:

Make sure to set this size before you draw the text.

For example:

Processing also has other great functions, like determining how many pixels long a
string will be when displayed on the canvas, or how tall it will be – these
measurements can be useful for doing layouts of your interface. However, they are
beyond the scope of this class. Feel free to look them up online!

 Converting between text and numbers
Fundamentally, the idea of a number and its textual representation are quite different.
For example, the number 5 is an abstract concept that you can store in an integer,
and do mathematical operations on it. However, the textual representation of “5” is
arbitrary and depends on the language. For example, these are all representation of
the same number: 5 V ||||| いつつ 五 오. As another example, the number 1234.56
can be textually written as 1,234.56 or 12,34.56 and still have the same intrinsic

text(string data, x, y); // draw string at x,y

text("Hello World!!", 50, 50);

textSize(size in pixels);

int size = 50;
textSize(size);
text("Hi!", size, size);
size = 100;
text("Hi!", size, size);
size = 150;
text("Hi!", size, size);

x,y

Page 128 of 412 © James Young, 2015

numerical meaning and value.

As such, the string “5” is different in a computer than the integer 5. Try the following:

Processing complains that you cannot convert from a String to an int, and it
doesn’t work. Likewise:

Doesn’t work. Text and numbers are fundamentally different concepts, and
computers see them as fundamentally different data types. The computer does
not see them the same as you or I would.

The workaround is that we need specific commands to convert back and forth
between numerical and string data. We have two commands for this:

We can use these to fix our above examples:

Likewise:

This fixes our problem, and these tools will be an important part of your toolkit.

Unfortunately, these commands aren’t that powerful. If the command gets confused,
it just gives you a bad result. You need to watch for that. For example:

String s = "5";
int i = s;

int i = 5;
String s = i;

int int(StringData); // converts string to an int
float float(Stringdata); // converts string to a float
String str(numericalData); // converts a number to a String

String s = "5";
int i = int(s); // convert the String to an integer

int i = 5;
String s = str(i); // convert an integer to a String

String s = "1,234";
int i = int(s);
float f = float(s);
println(i);

Page 129 of 412 © James Young, 2015

In this case, the i gives you a 0, and the f gives you NaN – This is short for “not a
number”. Yeah, THAT makes sense. Basically, if you get a NaN, it just means it’s
broken.

You will find that, in particular, converting from a number to a string for output is very
common. This is so common, in fact, that Processing has a shortcut for it. If at any
point, you combine a string and a number with a plus sign – that is, you try to
concatenate a string with a number – Processing does the number-to-string
conversion for you. For example:

This is another nice thing that will save you a bunch of time.

 Example: Celsius and Fahrenheit Scale
Let’s make an interactive
Celsius and Fahrenheit
scale, where you can
move the mouse to select
a temperature and see
both the c and the f
reading.

Let’s work through our globals to start setting up this project. Let’s start with the basic
dimensions:

We also need to setup the range of the scale (hot to cold):

Now that we have our basic setup thought out, we can start drawing our scale. Let’s
use top-down programming to setup the draw block, defining the jobs that need to
be done.

println(f);

String s = "My age: ";
s = s + 99; // actually s = s + str(99)

final int S_TOP = 100; // scale top
final int S_LEFT = 30;
final int S_WIDTH = 400;
final int S_HEIGHT = 30;

final int HOT = 50; // celcius
final int COLD = -80;
final int TEMP_RANGE = HOT-COLD;

Page 130 of 412 © James Young, 2015

Drawing the scale background just requires a rectangle with the correct colors, using
the globals that we already setup. I use a white outline and black fill. This is simple,
so I don’t put the code here.

Next, we need the labels at the left and the right of the scales. This is slightly trickier,
as there are three problems to solve. First, where on the screen are they drawn?
Second, we need the Celsius and Fahrenheit for both, and this should be calculated
and not hard-coded, as the HOT and COLD variables may change. Third, we need to
construct the required string output.

The locations are not that hard. The leftmost top label actually goes at the scale left
and top. Remember that text’s y coordinates, when drawn, refer to the bottom of the
string. So, if we want a string on the top of our scale rectangle, we use the same
coordinates.

Then, to calculate the actual Fahrenheit we use the standard formula. This was an
exercise in the previous chapter. Make sure to use floating points, and be careful of
integer division!

To construct the labels, we use our conversion functions to convert the numbers to
text, and then, use concatenation to attach the appropriate “c” or “f” suffix.

Note: do you see a shortcut here? Concatenating a number with a string
automatically does the conversion for you, so the str function calls are actually not

void draw()
{
 background(0);
 drawScaleBackground();
 drawScaleLabels();
 fillScaleUsingMouse();
 drawScaleReading();
}

int x = S_LEFT;
int y = S_TOP;

float f = 9.0/5.0*COLD+32;

String celsius = str(COLD)+"c";
String fahrenheit = str(f)+"f";

Page 131 of 412 © James Young, 2015

necessary in this case.

Finally, we need to draw these. We have the x and y for the top label, and for the
bottom, we just add the height of the scale. We also already have the strings:

Now that you have left labels, calculating the right ones is trivial. Try it on your own
– you need new numbers, new strings, and a new location. Notice that you can reuse
your existing variables for this.

Now, we have a nice scale with Celsius and Fahrenheit on it!!! Yay!

Filling the scale based on the mouse position is a little bit tricky, and requires the
following steps to be done in our fillScaleUsingMouse function:

 Calculate how far along the scale the mouse is. Take the mouse position and
subtract the left end of the scale

 Make sure we’re not off either end of the scale!!
 Draw the filling using that width

Choose a color for the filling, too, before drawing that fill. I used grey. At this point,
your program should draw a filling in the scale that animates as you move the mouse.
It should be aligned with the mouse cursor’s X position.

Finally, the last part is to draw the label at the top of the screen, which gives the
current reading at the mouse position in both Celsius and Fahrenheit. This has
several steps – we need to get how far the mouse is along the scale in pixels, then
convert that to how many degrees that represents. Then we need to convert that to
Fahrenheit, and construct our message.

We already calculated our mouse position along the scale in the xOffset variable
in a different function. You can either re-calculate that here, or, make the previous
variable global so that you can re-use the value. In that case, pay attention to the
order that the functions are called in, to ensure that the variable is properly calculated
first.

We convert the mouse offset along the scale (how far it is from the scale left) to a
percentage of the scale first, and then mapping that to the temperature range.

text(celsius, x, y);
text(fahrenheit, x, y+S_HEIGHT);

int xOffset = mouseX – S_LEFT; // how far along scale
xOffset = max(0, xOffset); // if < 0, make 0
xOffset = min(S_WIDTH, xOffset); // if > width, make width
rect(S_LEFT, S_TOP, xOffset, S_HEIGHT);

Page 132 of 412 © James Young, 2015

First, we are hit with a problem. If we try to generate our percentage:

Can you see the problem? Both xOffset and S_WIDTH are integers, giving integer
division. We can fix this by making one of the variables, the xOffset, a float.

Now that we have the temperature as a percentage, we map it to our temperature
range. First we find out where in the range we are, then we add in the minimum
temperature.

Now we can also calculate the Fahrenheit:

And construct our output message:

You should make sure to set the color, too.

All done! Here is my final code:

float tempPerc = xOffset/S_WIDTH;

float tempC = tempPerc*TEMP_RANGE+COLD;

float tempF = 9.0/5.0*tempC+32;

String message = "Temperature: "+tempC+"c, "+tempF+"f.";
text(message,20,20);

final int S_TOP = 100;
final int S_LEFT = 30;
final int S_WIDTH = 430;
final int S_HEIGHT = 30;
final int HOT = 50; // celcius
final int COLD = -80;
final int TEMP_RANGE = HOT-COLD;
final int xOffset = 0;

void setup()
{
 size(500, 500);
}

void drawScaleBackground()
{

Page 133 of 412 © James Young, 2015

 stroke(255);
 fill(0);
 rect(S_LEFT, S_TOP, S_WIDTH, S_HEIGHT);
}

void drawScaleLabels()
{
 fill(255);

 int x = S_LEFT;
 int y = S_TOP;

 float f = 9.0/5.0*COLD+32;

 String celsius = str(COLD)+"c";
 String fahrenheit = str(f)+"f";
 text(celsius, x, y);
 text(fahrenheit, x, y+S_HEIGHT);

 // draw right marks
 x = S_LEFT + S_WIDTH;
 f = 9.0/5.0*HOT+32;
 celsius = HOT+"c";
 fahrenheit = f+"f";
 text(celsius, x, y);
 text(fahrenheit, x, y+S_HEIGHT);
}

void fillScaleUsingMouse()
{
 // fill in thermometer
 int xOffset = mouseX - S_LEFT; // how far along scale
 xOffset = max(0, xOffset); // if <0, make 0
 xOffset = min(S_WIDTH, xOffset); // if >width, make width
 fill(127);
 rect(S_LEFT, S_TOP, xOffset, S_HEIGHT);
}

void drawScaleReading()
{

Page 134 of 412 © James Young, 2015

 Characters
This may seem strange at first, but in Processing, in addition
to the String type, we have a type for single characters. The
reason for this is that while String is an object (complex!), the
character is a primitive type. They are otherwise very like the
other primitive types. In fact, Strings are actually internally
made up of a collection of this character primitive type.

In the short term, we won’t use characters much. Later, when
we learn more advanced programming techniques, we will do more work with taking
a string apart into individual characters.

To create a character variable, you use the keyword char, which can be pronounced
like “car” (short for character), or char (like charbroiled).

You create a character literal by using the single quotes. Be careful, using
double quotes gives you a string, which is different.

Characters can be numbers, letters, upper case, lower case, symbols, etc. Basically,

 // output the reading from the mouse
 float xOffset = mouseX - S_LEFT; // how far along scale
 float tempPerc = xOffset/(float)(S_WIDTH);
 float tempC = tempPerc*TEMP_RANGE+COLD;
 float tempF = 9.0/5.0*tempC+32;
 String message = "Temperature: "+tempC+"c, "+tempF+"f.";
 stroke(255);
 text(message, 20, 20);
}

void draw()
{
 background(0);
 drawScaleBackground();
 drawScaleLabels();
 fillScaleUsingMouse();
 drawScaleReading();
}

char c;

char c = 'j';

I’m quite the character,
myself!

Page 135 of 412 © James Young, 2015

anything that can go in a string, is a character. But be careful! You cannot place two
characters in one variable:

 What is a Character anyway?
Everything in a computer is stored as a
number. Characters are no exception. When
early computer people started to store
characters, they had to think up a way to
convert a random character like the letter ‘q’
into a number. The solution was to develop a
standardized lookup table, where each
character would be
assigned a number. For
example, let’s say that ‘q’
is 113. Every time the
computer encounters the
character 113, it draws a
q from its font. This kind of
system requires
standardization – all
computers that talk to
each other need to agree
on this.

One early standard for this was called ASCII
(pronounced ass-key). In ASCII, all the basic
characters and some “control” characters (to
send commands to, e.g., old printers), were
put onto this table. Everyone agreed, so now that every time the computer
encounters the number 84 as a character, it knows that it’s a capital T.

Advanced you can test this out. If you force a character to be read as a number,
then Processing will tell you the ASCII number. How can we do this? We can just
store the character into an integer. There is some things happening under the hood
here that we’ll learn soon. People don’t really do this, though, so it’s just a bit of a
toy example.

char c = 'ja'; // doesn’t work

char c = 'X';
int number = c;
println("The ASCII number for "+c+" is: "+number);

You can look it up, but
no one knows what
ASCII stands for. It’s an
acronym, though..

Image cc, derived from commons.
wikimedia.org/wiki/File:ASCII-Table-
wide.svg

Page 136 of 412 © James Young, 2015

Looking at the above ASCII table, can you see any limitations? This is extremely
limited! No accented letters! Does not handle complex writing systems! We need a
new standard that can handle Chinese, Arabic, Hebrew, and Korean!

こんにちは！ 中国語 안 녕 하 세 요 שָׁלוֹם

A new standard was developed for all languages – it’s called Unicode. One code to
rule them all, one code to bind them. We don’t cover Unicode in this course, but it’s
good to know a rough idea of what it is.

 Characters and Strings
So I told you that Strings are made of characters, so now let’s learn a little more
about that. You should think of strings as a series of boxes, where each box is a
character. For example, the string “SPROCKET” is stored internally as follows:

You can see that each character in the string gets its own box. Even spaces, symbols,
etc. Now, internally Processing numbers them in a very specific way that is simple
at first but will end up causing you all kinds of grief:

String Character numbering: the characters are numbered in order, starting at
0.

As follows:

How many characters are in the string “SPROCKET”? 8. What is the index of the
last character? 7!!!!!! This is called the dreaded off-by-one error which will plague
you for the rest of your computer science career.

char char char char char char char char

S P R O C K E T

char char char char char char char char

S P R O C K E T

0 1 2 3 4 5 6 7

Page 137 of 412 © James Young, 2015

Off by one error: Since computers start counting at 0, and we generally start
counting at 1, your intuition is often off by 1.

For example, with strings, the index of the last bin is always the length of the string
-1, as above.

 String methods
Strings, since they are objects, can be used differently than other variables. There
are a new kind of command that we can do on Strings. Up until now, we call
commands functions. When a command is attached to an object, we call them
methods. Here is some syntax (not exactly how you use it, that’s next):

These are commands that can tell you how long a string is in number of characters
(including spaces, punctuation, symbols, etc.), and, that can get you a character in
a specific bin.

These commands can be used as follows:

The output here is 12, and H. 12 is the number of characters in the string, and H is
the character at bin 0, which is the first bin. How would you get the last character
using these commands?

For now, you will mostly use strings to put text on your screen relating to your

program. Soon, however, we will learn more advanced techniques that will let us

do things more with the character and length methods, for example, calculating

someone’s initials.

int stringVariable.length(); // number of characters
char stringVariable.charAt(int index);

String s = "Hello world!";
println(s.length());
println(s.charAt(0)); // first character

s.charAt(s.length()); // ERROR! Off by one
s.charAt(s.length()-1);

Page 138 of 412 © James Young, 2015

 Check Your Understanding: Exercises

 Computers often use template text in a situation, like a website, and
then populate it depending on the user. Write a program to use the following
template text:
“Hello <name>, from <city>, <country>. Thank you for shopping at <store>.”

a. Create variables for each unknown, and assign them reasonable
values.

b. Using string concatenation, construct a single new string with the entire
message in it

c. Put the string to console
d. Put the string onto a canvas graphically

 Make a program that takes two digits, as Strings, such as “1” and “5”
(call them number 1 and number 2), and create two numbers by concatenating
them in both orders. In this case, you get “15” and “51”. Convert them to numbers,
and divide the first (number 1 then 2) by the second (2 then 1), in this case, 15/51.
In what instance do you get 1 as a result? In what instance may this crash?

 Your friend is having trouble understanding the coordinate space in
Processing, so you came up with a plan to help them. Make a program that
displays the mouse’s current position on the screen, so that as the mouse moves
around they can see how the position changes.

a. Construct a string that stores "<mouseX>, <mouseY>"
b. Set the text size to 20
c. Display the text at x=0, and half way down the screen

 The same friend has trouble understanding how the font sizes
change. Update Exercise 3, and make the font size equal to the mouse’s y
coordinate, divided by 5.

 Make a program that prints out a string to the console in a special
formatting. Given a string variable called data, construct the following: "-
<firstCharater>-<string>-<lastCharacter>-(<length>)” and
output it to console. For example, if data was set to “Hello!”, then the output would
be “-H-Hello!-!-(6)”.

 Update Example 8.5, the temperature slider, to remember the

Check your Understanding

CuSn

CuSn

CuSn

CuSn

CuSn

Ag

Page 139 of 412 © James Young, 2015

maximum temperature that the mouse has ever reached. At that spot, draw a line
through the scale, and put the text “Max: <maximum value>”.

 Make a program that plots a circle
at a random spot and size on the screen, and
displays the coordinates and size of the circle.
How would you get whole numbers only, and
not real numbers? We haven’t learned how yet
.

a. Move the text slightly away from the
circle, up and to the right.

 Make a program that turns a

number into a special circle on the screen.
Given a number, first get how many digits that number has (hint: convert to a
string). Then, the x coordinate of the circle is the length to the power of 4, modulo
the screen width. The y coordinate is the length times the number itself, times the
last digit in the number, modulo the height. Make the ellipse 50x50. (The output
here is pretty boring – but as long as it works reasonably well, you are good to
go. Just for practicing all the new stuff you learned).

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

Ag

Au

Page 140 of 412 © James Young, 2015

(page intentionally left blank)

