

Page 141 of 412 © James Young, 2015

 DATA TYPES AND MEMORY

Summary
Here you will learn the basics about bits and bytes, and how computers store data.
You will also see how to convert between similar numeric types.

In this section, you will…

 Learn that some data types take up more memory than others.
 See nearly the full list of primitive data types.
 Learn about casting, converting between data types.

Learning Objectives
After finishing this unit, you will be able to …

 Make integer or floating point variables that use more or less memory.
 Convert between data types using explicit and implicit casts.

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 142 of 412 © James Young, 2015

 Introduction
Now that you have some programming practice let’s take a step back and learn a
little about bits, bytes, computer memory, and what this means for your data types.
We will learn about how data is stored (only briefly!), what different data types are
available, and how you go between the data types.

 Bits and bytes and nibbles
Advanced: A computer stores everything as switches that can be either on or off.
These switches are called bits, and usually are written as a 0 for off, or a 1 for on.
One bit has 2 possible settings. A combination of two bits has 4 possible settings
(00,01,10,11). In fact, n bits has 2n possible settings. If you stick with computers,
you’ll get very comfortable with powers of 2, for this reason.

How do you count with bits? Logically, it follows the same as when you count in
regular base-10 numbers, but it takes a bit to wrap your head around it. The first two
numbers are easy

But now, since we ran out of digits (binary only has 0,1), we need to add a new
column on the left, and add a 1. This is like when we go 0,1,2…9; if we want to
count higher, we add a 1 on a new column to the left, and reset the rest of the number
to zero, to get a 10.

now we just add a 1 again to get 3

Like above, we ran out of digits so we reset to zeros and add one on the left. Just as
99 becomes 100, then 11 becomes 100 in binary

Try to keep going with this. How would you write 31?

A group of 8 bits (switches) is called a byte of memory

A group of 4 bits (half a byte) is called a nibble (seriously!!)

0
1

10 // 2

11 // 3

100 // 4

00110101 one byte of data

Page 143 of 412 © James Young, 2015

From here we scale up.

A terabyte has 1,099,511,627,776 bytes. It has 8,796,093,022,208 switches (bits).

If we line up those many switches using standard 7 cm light switches, we get a line
of switches 615 million kilometers long! That is four times the distance from the earth
to the sun. Holy cow, that’s a lot of switches.

As an aside, some new standard units are moving to even powers of ten, where 1
terabyte = 1,000,000,000,000 bytes. This is not easily represented inside a computer
because it’s not a power of two, but people like it better.

 Using More or Less Memory
Variables use computer memory, and each variable type has a clearly defined
amount of memory that it can use. A variable that uses more memory can store a
wider range of numbers, and/or more precision, and a variable with less memory can
store less. Although our examples are very small and you may not think you need to
worry about computer memory, professional programmers are generally thinking
about how they are using memory and keep an eye to being economical.

Let’s look at the int data type. As we learned previously, the largest number that an
int can store in Processing is 2147483647 and the smallest number is -
2147483648. This seemingly-random number is actually determined by how the
number is stored; ask your professor if you are interested:

Now, what happens if we increase the number by 1? To try and force it to store that
bigger number?

If you try this, you will see that you get a very large negative number. In fact, what
we are seeing here is hitting the memory limits of the integer data type. If we go over
the limit, the values roll over. The same happens in the other direction – if we keep

0110 a nibble of data

210 bytes, or 1024 bytes, (8192 bits) is called a kilobyte
220 bytes, or 210 (1024) kilobytes, make a megabyte
230 bytes, or 210 (1024) megabytes, make a gigabyte
240 bytes, or 210 (1024) gigabytes, make a terabyte

int number = 2147483647;

number++
println(number);

Page 144 of 412 © James Young, 2015

going minus, we will see eventually a positive number.

This can be very confusing! If you end up seeing unexpected negative numbers
when you are doing calculations, it may be because you had an overflow.

If you come across overflow, you generally need to try and be cleverer with your
numbers to avoid such large numbers. Alternatively, you can use a data type with
more memory.

 The Primitive Data Types
There are only a few basic, core data types, in most programming languages. We
have already seen three basic types: float, char, and int. Remember, String
is an object and acts differently. This actually covers most of the general territory of
primitive types. We will soon learn boolean, a type for true and false only. However,
in addition to this, we mainly have variants of the integer and floating point types with
more or less memory. For example, in the integer class we have the following
variables

type size minimum maximum
byte 1 byte -128 127

short 2 byte -32,768 32,767

int 4 byte -231 231-1

long 8 byte -263 263-1

You can use these types just like the other ones we have learned. Also, these are
integers, so they follow the same rules regarding integer division, etc.

For the most part, you will only use the larger type (long) if you want a larger range
of numbers to store. Except for special circumstances, there is little benefit to using
the smaller types.

Advanced: You may think you can save memory by using, for example, the short
type. However, you won’t likely save memory. Computers work fastest on number
sizes that match their processor. For example, in recent years you hear about 32-bit
and 64-bit processors. If you have a 2 byte short variable, and a 32 bit computer,
your computer is likely to store those 2 bytes alongside 2 empty bytes to make a 32
bit number, to save time and processing to work with it. So, even though a short has
2 bytes, your computer still will probably use 4 to store it. In exceptional
circumstances (not in Processing or Java), you can tell your computer how to pack
these numbers, for example, when you really need that memory saved, or you need
to ensure how many bytes are used.

For floating point numbers, we only have two types. We have the float (4 bytes)

Page 145 of 412 © James Young, 2015

and the double (8 bytes) types. Unlike integers, more memory in a floating point
does not manifest itself only a larger range. Instead, it is also more precision. For
example, if you perform 2/3 you get the following results:

float - 0.6666667

double - 0.6666666666666666

As you can see, the double variable gives a closer approximation. In general, we will
stick to the int and float types, but you should be aware of these variants.

Advanced: float or double? Which is better? Clearly, double has better precision.
If you have a 64 bit machine, your 32 bit (4 byte) float will likely take 64 bits of
memory anyway, so why bother with float? If you talk to people who do scientific
computing, they will argue strongly to always use double. In fact, in regular Java,
double is the default floating point type. However, if you talk to a graphics person,
they may tell you to always use float. Also, processing defaults to float. Why is
this?

The complication here is graphics cards – your computer has a specialized
processor to do graphics. Even if you spend a boatload of cash on a high-end gaming
video card, it is very likely optimized for float and not double. For graphics, speed
is more valuable than a bit of extra precision.

 Going Between Data Types: Casting
If you take a metal statue – like a miniature lion – and you want to turn it into a statue
of a dog, one way to do it is to first melt the lion down (it’s metal, after all), and pour
it into a mold, a cast, of a dog. Once it cools, now you have a metal dog. This is
called casting, when you take a metal and force it into the shape of the cast.

There is a similar idea in programming. Casting is taking one kind of data and forcing
it into the shape of another type. Although we haven’t dealt much with any integer
type except for int, let’s try a few things.

Processing complains and won’t compile: cannot convert int to byte. We
may have guessed this, since we know that byte can only go as large as 128 and
cannot store 1234 (check the table on the previous page). Let’s try another one:

Even though we know that the integer can handle the number 1234, Processing still

int i = 1234;
byte b = i; // store 1234 in b

long l = 1234;
int i = l;

Page 146 of 412 © James Young, 2015

complains: cannot convert long to
int. In fact Processing does not even look
inside to see if the number fits. It just knows
that the datatypes are of different sizes, so it
complains. The issue here is that you can
lose data mistakenly. What if the long actually
had a number that was too large for the
integer? What should happen then? Should it
roll over like in our earlier examples? It is
quite confusing, so to play it safe, Processing
just stops and doesn’t let you do it. This is called a narrowing conversion, since
you are moving from a more-capable type to a less-capable type. You can lose data
if you are not careful: the diagram illustrates this, showing that you need to break a
long up (8 bytes) to make it fit into the 4 byte box.

What about the other direction? What if we want to store an int type into a long?
Or a byte into an int? Try the following

Here, we take a byte, then try and store its value into a 4-byte int, and then try to
store that into an 8-byte long. If you try these in Processing, they all work just fine.
This is because we are asking Processing to move from a less capable type to a
more capable one. This is called a widening conversion – as in the inset below,
Processing has no problem with this since there is no risk of data loss. The 8 byte
long can easily accommodate the 4 byte int. When data is converted in this way
– from a less-capable to a more-capable type – it is called an implicit cast. The
conversion happens implicitly, without you asking for it.

Sometimes, you want to force a
narrowing conversion even though
you know that data may be lost. For
example, you may be working in a
long datatype to work with large
numbers but you know that your
result is small enough to fit into an
int (perhaps you divided it by a large
number). In this case, you need to
use an explicit cast to make this happen – you need to tell Processing that you
know what you are doing and you want it to cast the data to the new type, even
though data may be lost.

byte b = 12;
int i = b;
long l = i;

int (4B)

long (8B)

Page 147 of 412 © James Young, 2015

Let’s do an example:

In this case, Processing will not run this code because of the narrowing conversion.
However, we know that it is safe, so we want to force a conversion using an explicit
cast. The syntax of an explicit cast is as follows:

For example, we can update the above example:

This tells processing that we know what we are doing,
and to go ahead and do the conversion.

The same logic above holds for going between floating point types. Since double
uses more memory than float, it is larger. Going from float to a double is a
widening conversion, and can be done with an implicit cast. Going from double to
float is a narrowing conversion and requires an explicit cast:

What about going between the integer and floating point types? In this case, we need
to think about it a little differently. Instead of thinking about more or less memory,
think about more or less capable. A floating point number can store more detail than
an integer, which is limited to whole numbers only. Therefore:

 Going from integer -> floating point is a widening conversion, and does
not require an explicit cast.

 Going from floating point -> integer is a narrowing conversion, and
requires an explicit cast.

When you go from a floating point to an integer, you need an explicit cast. Java just
cuts off the decimal portion and stores the whole number. For example:

long large = 200;
int small = large;

(newType)data

long large = 200;
int small = (int)large; // explicit cast

float f = 1.23;
double d = f; // implicit cast OK!
d = 5.123
f = d; // ERROR! Cannot convert, narrowing conversion
f = (float)d; // OK – explicit cast.

I hate casting. I never get the
part.

Page 148 of 412 © James Young, 2015

What do you think the output will be? Try it out.

One more thing to mention is the order of operations with casts. What about the
following?

What do you expect will happen? If you try to run this, Processing complains that it
cannot do the conversion. This is because casts happen first in order of
operations. In this example, the 0.5 gets converted to an int first, which becomes
a zero.

then there is a floating point multiplication, resulting in 0.0, which cannot be stored
in an int, since it is floating point.

In this class, you will primarily use casting to go between integer and floating point
numbers, but you will need to understand the basics of how it works in general, as it
is testable. You will use casting a great deal more in future courses in two ways: one,
you will do more bits-and-bytes work, and two, casting ends up showing up in object
oriented programming, as well.

There are two final notes about casting. First, you can use casting to go between
integers and characters, as long as you understand that a character is just a number
underneath. Two, when you convert between String and numerical types, we do not
call it casting, because a lot of work goes into it; data just isn’t forced into a new type
(with possible data loss). Someone actually wrote a program to analyze your data
and convert it to a string or number.

 Check Your Understanding: Exercises

 Make a program to help a shipping company figure out how much
oil can fit inside a square tanker. The tanker has dimensions of width: 1234mm,
height: 5678, and length: 9012. This company uses barrels that store 1 million
cubed millimeters.

float f = 1.234;
int i = (int)f;
println(i)

int i = (int)0.5*3.0;

int i = 0*3.0;

Check your Understanding

CuSn

Page 149 of 412 © James Young, 2015

a. Calculate the volume of the tanker using integers, by multiplying the
width by the height by the length.

b. Calculate how many barrels can be stored by dividing the total volume
by a million.

c. println the result. What is wrong with it? How can you fix it? Your
final answer should be 63143 barrels.

 Your friend wrote the following code to generate a random dice roll
(on a standard 6-sided die), but complains that a) they get decimal numbers, and,
the dice roll starts from 0 instead of 1.

prinln(random(6));

a. You know that the decimals happen because random gives you a
floating point result. How can you fix this using casting?

b. Fix the off-by-one error

 The following code contains two casts: an explicit and an implicit one.
Can you identify both?

float f = (int)PI;

 Up until now, you can avoid the problems of integer division by
making one of the operands a float; remember, if both operands are integers, the
computer does integer division. Without changing the data types, and only
introducing casts, how can you fix the following code bug which unfortunately
uses an integer division?

int units = 10;
int dollars = 5;
float cost = dollars / units;
println("the cost is: "+cost+" dollars each");

 Use casting and a little bit of math to print out a floating point number

to two decimal places only. For example, println(PI) should give you 3.14.

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

Au

Ag

CuSn

CuSn

Page 150 of 412 © James Young, 2015

