

Page 187 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 LOOPS

Summary
You will look at how to make Processing repeat a command a given number of times,
or, while some condition is true. This greatly increases the power of your programs.
In this section, you will…

 Learn about two different kinds of loops, for making the computer repeat
operations: the “for” loop and the “while” loop

 See how loops impact variable scope
 Learn about common problems with loops
 Get a great deal of practice with loops.

Learning Objectives
After finishing this unit, you will be able to …

 Create a for loop to repeat an operation a fixed number of times.
 Create a while loop to repeat an operation while some condition is true.

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 188 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Introduction
So far in our programs, we have to explain every single operation that we want the
computer to do. Using if statements some of our programming can be conditional
based on the circumstance, but for things that are done, we give each command in
an operation. It would be nice if we could provide more general commands to the
computer, to more easily do more work.

Loops are simple at their core, but for many, are a new way of thinking. As such, we
have included a large number of examples in this chapter.

 “for” loops
For example, let’s draw horizontal and vertical lines to make a grid. How would we
do this with the tools we have so far?

First, let’s establish the dimensions of the grid, and use
that to calculate the height and width of the cells.

Now we can start drawing our grid. Let’s draw the
horizontal lines first. Each line is basically offset a
multiple of the cell size.

Try this out. As you can see, we are drawing horizontal lines, and jumping down the
cell height for each line. For 10 cells, we need 11 of these line commands (not 10!).
We need 11 additional commands for the vertical lines, for a total of 22 line
commands. What if we wanted a 100x100 grid? That is 202 commands! Clearly we
can’t type this in by hand, and even using copy paste, this is very tedious.

Wouldn’t it be nice if we could re-factor the above code using something like the
following...

 For every value of in the range of 0..10
 Do a line from 0,cellSizeY*value, to width-1,cellsizeY*value

Think about it, and compare this to the three lines above. If we could tell the computer
to repeat that line command with different values multiplied by our cellSizeY, we’d
save a lot of work over typing them all up. As the value increases, our line moves

int grid = 10; // 10 by 10 grid
int cellSizeX = width/grid;
int cellSizeY = height/grid;

line(0,0,width-1, 0); // top line
line(0, cellSizeY*1, width-1, cellSizeY*1);
line(0, cellSizeY*2, width-1, cellSizeY*2);

Page 189 of 412 jimyoung.ca/learnToProgram © James Young, 2016

down the screen. Luckily, we can do this. Let’s learn Processing syntax to do this.
This is called a “for” loop.

When Processing encounters the code, it does the following operations:
Memorizing this sequence is immensely important, do it!

1. The initial command runs one time, at the start
2. The end condition, a boolean, is checked. If it is true, we run the code
block

3. The code block runs like normal processing code
4. The upkeep command is run
5. Go to step #2

Up until now, everything in this list follows what you have learned except for step 5.
Now, the program can go back, and repeat something again and again, until the end
condition is false. This is why is called a loop, as the code block runs again and
again.

It’s useful to think of this code in terms of what we already understand. Let’s work
from the following fake code example.

Here, we create a variable and give it an initial value. We use an if test to check for
some end condition, for example, if i is less than 10. Then we run the code block.
At the end of the code block, we make i larger by one. Then, it would be nice to go
back to the if and do it again.

You can see that every time we re-do the if statement, i increases, until i<10 is
false – that is, i is 10 or larger. This probably looks confusing, so let’s have a
concrete example using the actual syntax of a for loop. The following template of a
for loop is by far the most common use of the loop. Let’s assume that times is set
to 4.

for (initial command; end condition; upkeep command)
{
 // code block
}

int i = 0;
if (i < 10)
{
 // draw line at grid position i
line(0, cellSizeY*i, width-1, cellSizeY*i);

 i++;
} // go back to the if and do it again

Page 190 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Let’s look at this using the order of operations specified on the previous page.

1. The initial command runs one time, int i = 0;
2. The end condition is checked. if i<times, then we run the code,

otherwise, we quit the loop.
3. i is 0, so i<times, or 0<4, is true. The code block is run
4. The upkeep command is run, i++
5. Go to step #2 and repeat

If times is set to 4, then the loop will run 4 times: once with i=0, i=1, i=2, and
i=3. When i is 4, then i<times is false (4<4 is false), and the loop ends.

Note: This is a key spot for the dreaded off by one error. Since our loop starts
at 0, if we want it to run n times, the final run is with n-1.

You can put any valid Processing code in the initial condition, end condition, and
upkeep, but it makes most sense usually to stick to the above template. Let’s re-
consider our grid line example. Here are some of the line commands:

Looking for the pattern here, we can factor out the cellSizeY*1,2,3… and make
it cellSizeY*i:

If we complete the above command for the values of i from 0 to 9, we get 10 lines.
Let’s wrap it in a for loop to make i go from 0 to the grid size:

At the beginning, i is 0, so we get our first line command. Then, i increases to 1,
and we get the second line command above... this continues until i = 9, and we get
the 10th command. When i is 10 (grid’s value), our test is false, and the loop ends.

for (int i=0; i < times; i++)
{
 // code
}

line(0, 0, width-1, 0); // top line
line(0, cellSizeY*1, width-1, cellSizeY*1);
line(0, cellSizeY*2, width-1, cellSizeY*2);

line(0, cellSize*i, width-1, cellSize*i);

for (int i = 0; i < grid; i++)
{
 line(0, cellSizeY*i, width-1, cellSizeY*i);
}

Page 191 of 412 jimyoung.ca/learnToProgram © James Young, 2016

This gives us 10 lines. Above we said we wanted 11 lines – since for n cells there
are n+1 lines. Try updating the loop to give that last line (there are several ways to
do this).

You can modify the above loop to add the vertical lines as well. A second loop is not
needed. The calculation for the vertical lines is very similar to the horizontal ones:

You have the following grid! Wasn’t that easier than typing
all those lines manually? If you can think of your problem
more generally, you can use the power of for loops to save
yourself a bunch of work.

Now, let’s look at another great power of loops. If you setup
things generally, like we did here, things scale up very
easily! With this code, you can make a grid of any
dimensions just by changing that value of the grid variable.
Change that variable, and all your calculations change,
including how many times your for loop runs. Change the
grid to 100 and you get the following result, without any
additional work!

 Example: Line Art
You may remember in elementary school making some line
art like the image to the right. You take a ruler and draw
straight lines between the first point along the top, and the
first point on the right. Then you draw between the second
point on the top and the second on the right. You do
this for all the points, and you get an approximated
curve. The denser your points are, the better your
curve is approximated. We can now do this example
using for loops. In fact, this is very similar to our grid
example.

First, we need to calculate how many points across
the top we want, and the spacing of the point. This is
identical to our grid above. Then, we use a for loop
to iterate through all the points and then draw lines
between them.

To start something like this, first think about the line you want to draw before you
think of the loop. If you do a couple of examples, then it usually helps you to see a
pattern that will work in the loop. Assuming that we have the following variables:

line(cellSizeX*i, 0, cellSizeX*i, height-1);

Page 192 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Then we can draw some lines. The code for the first three lines would look as below,
assuming we draw from the top of the screen to the right of the screen. We would
draw all the way along, which each line being FROM (x=cell, y=0), TO (x=width-1,
y=cell). For example, the first line would be from the 1st cell along the top left, to the
1st cell down the right, the second line would be from the 2nd cell along the top left,
the 2nd cell down the right, etc.

From here, you can see that the general case would be rewritten as

for cell i. Now, we wrap this in a for loop that goes through all the cells

And it works! Make sure your code is up and running at this point.

To make this interactive, try setting the grid at the beginning of the draw block using
the mouse coordinate. What I did was to set the grid = mouse/10, so that grid ranges
from 1 to 49. Try this out to see what happens. Did it work okay? Did you try putting
the mouse ALL the way to the left of the screen?

If you put the mouse all the way to the left of the window, the program crashes!! This
may be your very first actual crash. If you look in the console of processing, it gives
you a very very long description of what happened. Look at the image on the next
page. If you look closely, there is some help in here. The first line helps you
understand what happened, if you read between the cruft. It says you have a “/ by
zero”. What happens if you divide a number by zero? It is undefined, impossible to
do, so the computer panics and stops your program.

NOTE: this is called a run-time error. The program starts up but hits an error
that it could not foresee ahead of time. This error makes the program stop

int grid = 10;
int cellSizeX = width/grid;
int cellSizeY = width/grid;

line(cellSizeX*0, 0, width-1, cellSizeY*0);
line(cellSizeX*1, 0, width-1, cellSizeY*1);
line(cellSizeX*2, 0, width-1, cellSizeY*2);

line(cellSizeX*i, 0, width-1, cellSizeY*i);

for (int i=0; i<grid; i++)
{
 line(cellSizeX*i, 0, width-1, cellSizeY*i);
}

Page 193 of 412 jimyoung.ca/learnToProgram © James Young, 2016

running and it gives you some helpful (hah!) information.

Also, notice that it tells you which line in
your program. In this case, my program is
the sketch_numbers program, so it tells
me that my error was at line 27. Processing
also highlights the line: As you can see
here, the error happens when I try to divide
by grid. Why would this be a divide by zero?
When would grid be zero?

Aha! When mouseX is zero, grid is 0/10
which is 0. How can you fix this?

There are many ways. A simple way here is to simply add 1 to grid. We know that
the very smallest possible value of mouseX is 0, so if we add one, we should be safe.
The program now works. Here is my final program.

int grid = 10;
void setup()
{
 size(500, 500);
 stroke(255);
}

void draw()
{
 background(0);

 // calculate grid spacing
 grid = mouseX/10+1; // +1 to avoid / by 0

Page 194 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Notice how sometimes when you move the mouse some additional lines get drawn
but the grid does not change? This happens because of the integer math that we are
doing. When we do our divisions to calculate the cell sizes, as our mouseX gets
larger, we have more of a rounding effect as the remainder is thrown away. Change
all the math to floating point to get a smoother animation, as you use real fractions
and do not throw away anything.

Note: why are we okay with using a single letter, i, for our variable name? In
general, single-letter variables are a bad idea. However, you can use them when
it’s convention, or follows a known formula. In this case, it is an accepted convention
in both computer science and mathematics to use i for an iterator, a value that
goes over a range of integers. Other common iterator variables are j and k.

 Example: Clock
Let’s make an analog clock. To keep things simple,
let’s just make it with the second hand, as in the inset.
This will be one of our most complicated examples
so far, and we’ll see how many of the skills we
learned so far come together to help us solve the
problems.

The first problem is how to make the circle of dots
around the clock. We need 60 dots, so doing this
manually with a bunch of ellipse commands is
probably a bad idea. We can use a for loop!

To approach this, let’s consider an arbitrary dot at some angle θ. Remember from
section 7.3 that, given an angle, we can calculate the x and y using sin and cos:

x= sin(radians)*radius

y= cos(radians)*radius

 int cellSizeX = width/grid;
 int cellSizeY = height/grid;

 // draw the lines
 for (int i = 0; i < grid; i++)
 {
 line(cellSizeX*i, 0, 499, cellSizeY*i);
 }
}

Page 195 of 412 jimyoung.ca/learnToProgram © James Young, 2016

The challenge here is, how do we calculate all the angles for those dots? If we can
get the angles, then we can get the x and y coordinates. The trick, which is very
common with for loops, is to work in percentages. First, for a given dot we figure
out what percentage around the clock we are, for that dot. Then, multiply that
percentage by 2PI (a whole circle), to get radians. Given a dot i (we have 60)

i/60.0 gives the percent of the way around the clock. Don’t forget to use 60.0. If i
is an integer, what happens if we use just 60? Integer division! Now that we have the
angle, we can calculate the x and y position. Let’s start writing the program.

First, setup some great globals that describe your clock

Then, in the draw loop, use a for loop to go through the 60 tick marks, calculate
their angles, and draw tick marks there. In this case, let’s put the clock at the center
of the screen.

Try this, and make sure it runs. Do you recall the exact order of operations with the
for loop? Does our loop run exactly 60 times? Or is it 59? 61?

There is one more thing. If you look at my example on the previous page, you can
see that every 5th tick mark is actually quite a bit bigger, just like on a real clock. How
can we go about doing this?

An easy way to do this – and one that is very common with computer scientists – is
to use the modulo operator. Remember that we did something similar earlier. If you
take some number n and take it modulo m, when do you get zero?

This is probably clearer if we use real numbers. If we take n modulo 5, when do we
get zero? Zero means no remainder. There is no remainder when n is a multiple of

float angle = i/60.0 * 2 * PI; // angle to dot

int clockRadius = 100; // size of clock
int tickSize = 1; // radius of tick marks

// draw tick marks
for (int i = 0; i < 60; i++)
{
 float angle = i/60.0 * 2 * PI; // angle to dot
 // center these on canvas
 float x = cos(angle)*clockRadius + width/2;
 float y = sin(angle)*clockRadius + height/2;
 ellipse(x,y,tickSize,tickSize);
}

Page 196 of 412 jimyoung.ca/learnToProgram © James Young, 2016

five. For example, 0, 5, 10, 15, 20, … We can use this to detect every fifth
dot – when we take the number mod 5, and get 0, let’s draw a bigger dot. This is a
simple if statement, and I created a new global to define the large tick size:

The last piece of the puzzle is how to get the second hand in there. For this, we need
a new processing command:

To draw the second hand, we need to first calculate the angle to use. This is very
similar to above. We simply take this number, find the corresponding angle, and draw
a line to the x and y point. Try it on your own before reading the following code. This
doesn’t belong inside the for loop, because we only draw one second hand.

Here is my final code:

if (i%5 == 0)
{
 ellipse(x,y,largeTickSize,largeTickSize);
} else {
 ellipse(x,y,tickSize,tickSize);
}

int second(); // returns the current seconds from the clock

angle = second() / 60.0 * PI * 2; // percent around circle
x = cos(angle)*clockRadius + width/2;
y = cos(angle)*clockRadius + width/2;
line(width/2, height/2, x, y);

int clockRadius = 100;
int tickSize = 1;
int largeTickSize = 3;

void setup()
{
 size(500, 500);
 stroke(255);
}

void draw()
{
 background(0);

Page 197 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Example: Strings

Let’s make a quick example to loop through a string, and put out each character at
a given spacing. Let’s first setup our globals:

then in our draw loop, let’s use a for loop to go through each index of the string.
Pay very careful attention to the for loop condition here. We loop i from index 0, to
the last index, which is length -1. Therefore, we go while index is less than the length.
Look at the following three, only the last one is correct

 float angle;
 float x;
 float y;

 // draw tick marks
 for (int i = 0; i < 60; i++)
 {
 angle = i/60.0 * 2 * PI; // angle to dot
 // center these on canvas
 x = cos(angle)*clockRadius + width/2;
 y = sin(angle)*clockRadius + height/2;
 if (i%5 == 0)
 {
 ellipse(x, y, largeTickSize, largeTickSize)
 } else {
 ellipse(x, y, tickSize, tickSize);
 }
 }

 // calculate and draw the second hand
 angle = second()/60.0*PI*2;
 x = cos(angle)*clockRadius + width/2;
 y = sin(angle)*clockRadius + height/2;
 line(width/2, height/2, x, y);
}

final int SPACE = 10;
final String message = "howdy!";

for (int i=0; i<=message.length(); i++) // 0..length
for (int i=0; i<message.length()-1; i++) // 0..length-2

Page 198 of 412 jimyoung.ca/learnToProgram © James Young, 2016

at each index, then we grab the character in the string into a variable, and put it out
at our given spacing. Luckily, the text command can take a character. You could also
explicitly convert it to a string using the str() command. Let’s place the string at
the mouseY just for fun. Inside the loop:

Try increasing the spacing to 20 to see what happens. Next, let’s animate the
spacing. To do this, we need to change the spacing each time we draw. To keep
track of this, we need a global that can change (not a final!) to keep track of where
we are. Let’s also define a range of spacing:

Now, in our draw loop, we can simply increase our space by one each time we draw.
If our space is larger than the max, re-set it to the minimum. You can try this yourself.
Here is my final code:

for (int i = 0; i < message.length(); i++) // 0..length-1

char c = message.charAt(i);
text(c, SPACE*i, mouseY);

//final int SPACE = 10;
final int SPACE_MIN = 10;
final int SPACE_MAX = 100;
int space = SPACE_MIN;

final int SPACE_MIN = 10;
final int SPACE_MAX = 100;
final String message = "howdy!";
int space = SPACE_MIN;

void setup()
{
 size(500,500);
}

void draw()
{
 background(0);
 space = space + 1;
 if (space > SPACE_MAX)
 space = SPACE_MIN;

Page 199 of 412 jimyoung.ca/learnToProgram © James Young, 2016

You can try touching this up, for example, to make the animation go backward when
it hits the limit instead of starting over, or animate the y spacing as well.

 “while” loops

There is another kind of common loop, called the while loop. The while loop,
fundamentally, is simpler than the for loop, so this should not be too challenging.

for loops are useful when we know how many times to do something, as in our
above examples. On the contrary, while loops are used when it is more difficult
to determine how many iterations are needed. In all of the above examples, we
were easily able to determine or calculate ahead of time, for example, how many
grid lines or clock dots we needed.

When we do a loop, we cannot always know how many times it needs to run. As
such, while loops are simply setup with a block and an end condition, and does not
specify how many iterations. Here is the basic syntax.

You can think of this as basically an if statement that keeps repeating until it is false.
In this case, Processing checks the condition first, and if it is true, it executes the
code block. Then, it checks the condition again, and if true, executes the code block.
Repeat while the condition is true, and stop when the condition is false.

As an illustrative example, let’s look at how to use a while loop to count to 1000.
(You’d normally use a for loop). We need a counter variable, say i. At the beginning
of the loop, we see if the variable is less than or equal to our maximum. Inside the
loop, print out the value. Before iterating again, increase our counter:

 for (int i = 0; i < message.length(); i++)
 {
 char c = message.charAt(i);
 text(c, space*i, mouseY);
 }
}

while (condition)
{
 // code block
}

int i = 1;
while (i <= 1000)
{

Page 200 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Here, the while loop acts like an if statement: if it’s true, do the block, if not done.
The difference is, that once the block is finished, the while repeats by checking the
condition again.

The order that things happen here is crucial. When the while loop starts, it first
checks the condition. Since the condition is true, it executes the block. At the end of
the block, it checks the condition again. If true, it executes, and so on. Repeat!

Important: the while loop only re-checks the condition at the end, and not mid-
way. If your condition becomes false part way through the block, the block gets
finished before checking the value again. The computer takes a really narrow vision
and only looks at one operation at a time.

Just like for loops, while loops generally have four important parts. The initial
command happens before the loop starts (int i=1). The end conditon is
checked at the beginning of each loop (i<1000). The code block is run each time
(println(i)), and the upkeep command is done at the end of the loop (i++).

In this case, you can see that the while loop and for loop are very similar. In fact,

the above example can be written as

And you get the exact same result.

Fundamentally, while loops are the basic loop and the for loop is just a syntax for
a common usage of while loops. Actually, you can make any loop use one or the
other, but it often makes more sense or is more intuitive to use a for loop or a while
loop in a given scenario. Overall, for loops are great when you know ahead of time
how many times the loop should run. While loops are better when you are unsure
and cannot easily quantify the number of iterations. Now let’s do some examples
where while loops make more sense.

 println(i);
 i++;
}

int i = 1;
while (i <= 1000)
{
 println(i);
 i++;
}

for (int i=1; i<=1000; i++)
{
 println(i);
}

Page 201 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Example: Random Walk
Here is a simple example. Let’s make a point start at the mouse, and move randomly
about, and see what kind of path it takes to the edge of the screen.

Without loops, a random walk has to be
animated: we do a single movement each
time we draw, and then watch as the point
moves around and finally goes off the screen.
This can take a long time. Instead, we want to
do this all at once, in one frame. We want to
see immediately what path the point will take,
as in the image to the right. To do this, we loop
through random movements until the ball
goes off the edge of the screen. If you want to
use a for loop to do this, the problem is that
you don’t know how many times the loop will
need to run, as it will depend on both where
the point starts, and, what random moves it
takes. Theoretically, it may go in circles for ever and never leave the screen, but it
probably will .

We can use a while loop to do this. Here is my overview of the draw function:

 Place a point at the mouse position
 Clear the screen
 While the point is still on screen
 Do a random movement
 Draw a point to represent the point

 Only do any of the above if the mouse is pressed (helps see the results better!)

Remember, this all happens each time you draw, before it gets shown on the screen.
As such, it may actually take some time before you see the result.

Most of this code in the draw loop is straight forward. Here is a sketch:

void draw()
{
 if (mousePressed)
 {
 background(0);
 stroke(255);
 pointX = mouseX;
 pointY = mouseY;

Page 202 of 412 jimyoung.ca/learnToProgram © James Young, 2016

This way, every single time you draw, you generate a point at the mouse position,
and loop random movements until it goes off the screen. You won’t see this animate
because it all happens entirely in one draw.

The only part missing is the “while on screen” part. We can setup a boolean easily
for this, and plug it into the while loop syntax above:

Here, we calculate a nice boolean and then plug it into the while loop. We could
actually put the entire boolean into the while loop, but this longer approach increases
readability, AND, gives a talking point. Let’s look at the whole draw loop now:

 // while on screen?
 {
 pointX += (int)(random(MAX_MOVE*2+1))-MAX_MOVE;
 pointY += (int)(random(MAX_MOVE*2+1))-MAX_MOVE;
 point(pointX, pointY);
 }
 }
}

boolean onScreen = (pointX >= 0 && pointX < width) &&
 (pointY >= 0 && pointY < height);
while (onScreen)
{
 ...

void draw()
{
 if (mousePressed)
 {
 background(0);
 stroke(255);
 pointX = mouseX;
 pointY = mouseY;
 boolean onScreen = (pointX >= 0 && pointX < width) &&
 (pointY >= 0 && pointY < height);

 while (onScreen)
 {
 pointX += (int)(random(MAX_MOVE*2+1))-MAX_MOVE;
 pointY += (int)(random(MAX_MOVE*2+1))-MAX_MOVE;
 point(pointX, pointY);

Page 203 of 412 jimyoung.ca/learnToProgram © James Young, 2016

If you run this, the program doesn’t display anything! What is happening??? Hint:
when does the while loop end?

We aren’t updating the while loop condition: the onScreen variable is calculated
only once, before starting the while loop. At this point, it is using the point’s starting
position. Once the code is in the while loop, the onScreen boolean is never updated
again. It always says true, and we have an infinite loop.

We need to update the onScreen variable inside the while loop, after we move the
ball, so that it keeps checking. It should work now.

Again, look at the above code. The following happens:

 The boolean onScreen is created and initialized based on the point’s starting
position

 The while loop starts, and checks onScreen. If true, it executes the block
 At the end of the block, the onScreen variable is re-calculated

 Back to the beginning of the while loop, check again.

This way, onScreen is always up to date before being checked again in the while
loop.

NOTE: the initial condition of this loop (just before the while), and the upkeep,
are very similar (the same!). This is very common. Also note that the test is directly
related to the upkeep – since the test should eventually be false.

 }
 }
}

boolean onScreen = (pointX >= 0 && pointX < width) &&
 (pointY >= 0 && pointY < height);

while (onScreen)
{
 pointX += (int)(random(MAX_MOVE*2+1))-MAX_MOVE;
 pointY += (int)(random(MAX_MOVE*2+1))-MAX_MOVE;
 point(pointX, pointY);
 onScreen = (pointX >= 0 && pointX < width) &&
 (pointX >= 0 && pointY < height);
}

Page 204 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Example: count digits in a number
If you are drawing a number on screen, it can help to know how many digits there
are. For example, a number with more digits either requires more space, or should
use smaller letters, than a number with fewer digits. We will make a program where
the font size shrinks as the number gets larger.

Given a number n, we will calculate how many digits are in n, and then set the
text size to 1.5*width/digits. Then draw the number using the text command,
at 0,height:

For this example, what we will do is initially set the number to 0. Then, we increase
it by mouseX at the end of the draw loop. This way, the number keeps getting larger.

The hard part here is, given a number, how do we know how many digits are in it?
One way to do this is to convert the number to a string, and then get the length of
the string. However, we can do it purely numerically, but it requires a bit of trickery.
Notice that for a number n, if we divide by 10 using integer division, we effectively
remove the right-most digit:

If we keep doing this, what happens? Eventually, the number reaches zero. Each
time we divide, one digit comes off. If we count how many times we had to do the
division before hitting zero, this tell us how many digits the original number had.

So, given a number, let’s repeat the above operation while it is not zero, and each
time we strip a digit, let’s count it.

We need a while loop here because we don’t know how many digits are in the
number, so we don’t know how many times the loop will run. We cannot use a for
loop. If we knew how many digits there were, we wouldn’t need the loop at all!

textSize(1.5*width/digits);
text(number, 0, height);

number = 1234;
number /= 10; // now has 123
number /= 10; // now has 12.

// the variable number has a valid integer
int digits = 0;
while (number != 0)
{
 number /= 10; // strip the right-most digit.
 digit++; // count the stripped digit
}

Page 205 of 412 jimyoung.ca/learnToProgram © James Young, 2016

There are a couple of gotchas here. One, our number variable should be getting
larger each time it draws, by adding mouseX to the value (see the previous page).
However, our operation of counting digits destroys the number value by continuously
dividing off variables. Our digit-counting operation is destructive, and so we lose the
original number.

The way to fix this is to copy number, and then destroy that copy to count the digits.
The original number stays unchanged.

Here is my draw loop, note that number is a global variable that starts at 0.

Try running the program now.

Oh no! This crashes and doesn’t work. What is going on? The algorithm above
actually works pretty robustly, except in one specific case! We have a special case
here. What happens when number is 0? We expect the result to be 1 digit. However,
in this case, since number starts at 0, the while loop is never run! Since the copy
variable is 0, then copy != 0 is false, and the loop is skipped. No digits are counted.
How can we fix this?

The easiest way is to use an if statement to keep track of the special case. If
number is 0, then we have 1 digit. Otherwise, use the algorithm to calculate it.

As you will often see, algorithms have dusty corners where they do not work, and
often require special cases. You can usually fix these by addressing them individually.
However, if you have many special cases, then perhaps you can find a better way to
solve the problem.

void draw()
{
 background(0);

 int copy = number;
 int digits = 0;
 while (copy != 0)
 {
 copy /= 10;
 digits++;
 }

 textSize(1.5*width/digits);
 text(number, 0, height);
 number+=mouseX;
}

Page 206 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Here is my code:

 The “do-while” Loop
Sometimes, the initial condition setup for a loop can be quite extensive, and
essentially becomes all the code inside the while loop. In this case, sometimes you’d
just like to ask Processing to run the whole loop one time first before checking the
condition. With the while loop, if the condition is false, the loop is never run, not even
once.

There is another kind of loop that helps mitigate this issue called the “do-while” loop.
This loop is not used heavily in practice. However, you should know about it as you

int number = 0;

void setup()
{
 size(500, 500);
}

void draw()
{
 background(0);

 int copy = number;
 int digits = 0;
 if (number == 0)
 {
 digits = 1;
 } else {
 while (copy > 0)
 {
 copy /= 10;
 digits++;
 }
 }

 textSize(1.5*width/digits);
 text(number, 0, height);
 number+=mouseX;
}

Page 207 of 412 jimyoung.ca/learnToProgram © James Young, 2016

may come across it in other people’s code.

This loop always runs at least once. In a while loop, if the condition is false, it is never
run. Since the loop is run at least once you can put the priming and upkeep as one
block just before the test.

Do while loops have some issues. What if the loop never should be run, not even
once, e.g., if the condition is false from the get go? Too bad, it runs at least once.
Also, since they are used less often, people can find them confusing, which can lead
to bugs.

 Loops and Scope
Consider the following code:

What will the output be? Well, i starts at 0, and gets larger, and the loop runs while
i<999. So, if i=998, then it’s still true... if i=999, it becomes false, and the loop
stops. So, the output should be 999, right?

Kind of. That would be the output if this code actually ran. Remember scoping rules?
A variable that is created inside a block only exists inside of that block. When you
declare a variable inside the for-loop initializer, as in this case, it becomes part of the
for loop’s local scope. That is, once the for loop has ended, the variable is destroyed
and cannot be accessed anymore.

The same goes for the while loop. While you do not create a variable inside the while
loop condition, any variables you make inside the block get destroyed at the end of
that block.

What about the following example? We know that we cannot have more than one
variable with a given name…

do
{
 // statement;
 // priming / upkeep
} while (condition);

for (int i = 0; i < 999; i++)
{
 do some stuff;
}
println(i);

Page 208 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Does this work, or, does Processing complain because we have two variables with
the same name? In fact, this code is perfectly fine. Since the int i variables only
exist within their local scope, they do not interfere with each other. Processing forgets
about the old int i the instant the loop is over, so when we try to create a new one,
it’s not a problem.

 Common Loop Pitfalls
There are some common mistakes made with loops, and it’s
worth peeking at them here.

Sometimes, the code inside a loop is never run, not even once,
and it can be hard to see why. For example:

A common cause for this is that loop test is never actually true. If the test is not true,
the block is not run, and the loop is ended before it starts! In this case, since i starts
at 0, then the test i>=10, which resolves to 0>=10, is clearly false, and the loop is
ended. Make sure that your starting condition is conducive to actually running the
loop.

Similarly:

In this case, the while condition i > 100 is never true because i starts at 10.

for (int i=0; i < 200; i++) {
 // some code!
}
for (int i=0; i < 300; i++) {
 // some code!
}

for (int i=0; i>= 10; i++)
{
// do something
}

int i = 10;
while (i > 100)
{
 println(i);
 i--;
}

Pitfall was a great
game!!

Page 209 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Another problem is that a loop can sometimes keep running seemingly forever even
though it should be short:

In this case, the problem is that i is getting smaller, not larger, so the test i<=10
doesn’t get closer to being true. Does this run forever? Think about the limits of
memory, and overflow, discussed in Unit 9. Make sure that your variable changes
appropriately and moves toward your end condition.

There are a lot of ways to mess up so that you never get a false check condition.
Consider the following:

This doesn’t work because j keeps getting larger, but i stays at 1. The test of “is
i<1000” is always true! The loop never ends.

How would you fix this? Either change the while condition to check j, or change the
loop upkeep to be sure that i gets larger.

What about this example?

What do you expect to happen? This will be an infinite loop because the loop is
missing an upkeep. numTimes stays at 0 and the test is always true, so it will print
out the message until the end of time.

for (int i=0; i<= 10; i--)
{
// do something

}

int i = 1;
int j = 1;
while (i < 1000)
{
 println(i);
 println(j)
 j++;
}

int numTimes = 0;
while (numTimes <= 10)
{
 println(numTimes);
}

Page 210 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Sometimes, your loop simply won’t compile:

The onScreen variable is created at the loop priming spot, and then it is checked
right away. Is the value true or false? Does the loop start or not? We have no
idea. No data has been placed into the variable, so the while loop cannot even check
it. This doesn’t work. Similarly:

While everything here looks reasonable, the variable i was never declared, and as
such Processing doesn’t know what to do with it. Don’t forget to declare your
variables!

Important: There is one more pitfall with loops. Be careful when using floating
point variables. In fact, I will go as far as saying that you should never use a
floating point as a counter in a loop, particularly for loops.

Consider the following example:

What do you expect to happen? If you did this on paper, you would get 11 lines
output: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.
However, since floating point numbers cannot be trusted to be accurate, we get
rounding error. This loop only outputs 10 lines, not 11, and 1.0 is never output. Try
it. Never use floating point variables in a for loop.

How would you fix this? Use an integer to iterate, and then a simple calculation to
get what you want. This way, any error does not accumulate, and you get an exact
count of iterations.

boolean onScreen;
while (onScreen)
{
 …
 onScreen = (ballX >= 0 && ballX < width) &&
 (ballY >= 0 && ballY < height);
}

for (i=0; i<= 10; i++)
{
// do something
}

for (float f = 0; f<=1; f+=0.1)
{
 println(f);
}

Page 211 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Try it out. As you can see, you still get precision error. However, it does not
accumulate. Further, you get exactly 11 lines of output as you expected.

 Example: Rose Art
In Unit 7, exercise 5, you generated an animation of
drawing rose art. At that time, doing the art
incrementally was the only way to get the job done.
Now, with for loops, you can draw the whole rose at
once. As a reminder, here is the formula to generate a
rose. k determines the number of petals, and xc and yc
determine the center of the rose.

 x ൌ cosሺ݇ݐሻ cosሺݐሻ ∗ ݎ ൅ ௖ݔ

 y ൌ 	 cosሺ݇ݐሻ sinሺݐሻ ∗ ݎ ൅ ௖ݕ

This is a parameterized function on t, and we draw the rose as t goes from 0 to 2
PI. At t of 0 we get the x,y of the starting point, which should be the same as the
final point, at t = 2 PI.

To draw the whole rose, we need to generate points along the rose at different values
of t, and draw lines between them. For the most part you should be able to try this
out yourself. The tricky part is how to use a loop to help out with this.

There are several ways to approach this. One way is to use a floating point variable,
start it at 0, and choose some increment to make t go from 0 to 2PI, for example:

And this will generate a range of t values. However, as we said above, you should
avoid using floating point variables in a for loop due to accumulation of precision
error. Instead, re-think the problem in terms of integers.

The way that you approach this is to determine how many points along the rose you
want to calculate. Let’s call this STEPS. If you want 100 points, then we use a for
loop to go through those steps. This avoids the floating point issues:

for (int i = 0; i < 11; i++)
{
 println(i*0.1);
}

for (float t = 0; t <= 2*PI; t += 0.01)

for (int i = 0; i < STEPS; i++)

Page 212 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Then, you use the value of i to calculate a t somewhere along the range of 0…2PI.
This is called linear scaling, and the simplest way to do it is to a) convert i into a
percentage along your range, and the b) take that percentage of your target range.

Why do we add -1 to STEPS? Think that one through. If you use it or not, changes
the distribution, and the final value of t in the last loop.

You can finish this example on your own.

 Check Your Understanding: Exercises

 Make for loops to output the following series of numbers to the
console, using println. All ranges are inclusive of the start and end number
Make sure to run them to test them, as you will often have off-by-one errors. The
only command inside the for loop should be the println, with everything else
happening in either the initial condition, upkeep, or test. Hint: these often show
up on tests.

a. 1..20
b. 25..30
c. 10..0
d. 1..100, even numbers only
e. -50..50

 Make a program, like in the inset, which
draws lines from the top and bottom edges of the
screen, to the mouse. Space them 50 pixels apart.
Make sure to use a for loop to save work, don’t draw
each line command individually.

 Update the clock example from 12.4.

a. add minute and hour hands. You will have some confusion to make sure that,
e.g., 12:00 is straight up. Remember that 0 degrees is right along the positive
x axis

for (int i = 0; i < STEPS; i++)
{
 float percent = i / (STEPS-1);
 float t = percent * 2*PI;
}

Check your Understanding

CuSn

CuSn

CuSn

Page 213 of 412 jimyoung.ca/learnToProgram © James Young, 2016

b. make the second hand move smoothly between the tick marks using the
millis() command, which gives the number of milliseconds from the clock.
Warning: this is the number if milliseconds since the program started, not
within the current minute or second, so you have some tricky math to solve.

 Computers do not draw perfect
circles. Because there is only a limited number of
pixels, a circle in a computer can only be an
approximation of a perfect circle. Usually, any
smart program does a good job and uses a lot of
tricks to make it look good enough that you see it
as a perfect circle. At the right, you see a circle
approximated by 9 line segments (a 9-sided
polygon). As more sides are added, the circle gets
smoother. In this exercise you will draw polygons
of various sizes, controlled by the mouse, to
approximate a circle. Use a radius of 100 (diameter 200) as shown.

a. First, use a for loop to draw the example given here, with exactly 9 points.
The starting point for the first is at angle 0 (straight out to the right). Every
point after that will be at an angle of, in this example, 1/9th, 2/9ths, 9/9ths
of the way around the whole circle (2π radians). Use a for loop to go
through the point numbers (use integers!) then calculate the radians from
that number. Use a line to connect each point to the previous point. You will
have to keep track of the previous point using variables. Remember that
for a circle with center (xc, yc), radius ݎ, the point at an angle of ߠ radians
around the circle is (ݔ௖ ൅ ௖ݕ ,ሻߠሺݏ݋ܿ	ݎ ൅ .(ሻߠሺ݊݅ݏ	ݎ

b. Once a is working, use the value mouseX/20 to determine the value of
points instead. In the draw() block, erase the window and draw a new
polygon every time. Watch what happens as you move the mouse from left
to right.

 Make a random walk variant
(similar to example 12.6) to simulate a string
floating up from the mouse. In each frame, place
a circle at the mouse of size 20, then use a
while loop to place a number of circles above
and to the right of the mouse. Do this by moving
the ball right and up a random amount from 0 to
the radius, and drawing a ball at the new
location, while the ball is still on the screen.
When this works, it will move quite nicely looking
like it is fluttering in the wind.

CuSn

CuSn

Au

Page 214 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Update exercise 7 from unit 8 (the random dot example), and use a
for loop to generate 20 random dots.

 In this exercise, you will draw a
message in a ring around the current mouse
position. The message will rotate slowly
clockwise, but if the mouse button is pressed it
will rotate counterclockwise instead. Use a
500x500 canvas, with white text on a black
background. The characters should be 15 pixels
in size, and they should be evenly spaced
around a circle 50 pixels in radius. Use the
message “Happy Birthday!”, but your program
should work with any other String of characters,
of any reasonable length, with no other
modification.

a. First, use a for loop to draw the message, one character at a time, with the
characters evenly spaced in a ring around the mouse location. Draw the first
character at an angle of 0 (directly to the right). Make sure this works before
continuing. Hint: use the length of the string, and math similar to Exercise 4.

b. Second, cause the ring of letters to rotate, by changing the starting angle of
the ring by 0.02 radians per frame. If the mouse button is not pressed, make
the ring of characters rotate clockwise, but change this to counterclockwise
if the mouse button is pressed.

 Write a program that will draw a
“chain” of circles that stretches from the
center of the screen to the mouse position.
Use a global constant to control the diameter
of these circles (try 20, which was used in the
example). Calculate the appropriate number
of circles to use so that the line of circles will
always have the appearance of a chain. Use
only a few circles if the mouse is close to the
center of the window, and more circles if it’s
near the edge. Try to keep the distance
between the centers of adjacent circles as
close as possible to 75% of the diameter of the circles. (Make a global constant
for this “perfect” distance, too.) The first circle should be exactly at the center of
the window, and the last one exactly on the mouse. To get perfect spacing you
might need something like 9.26 circles, which of course you can’t do. Use the
built-in round(x) function which will round a float value to the closest integer. That
will work better than simply throwing away the fraction.

CuSn

Ag

Ag

Page 215 of 412 jimyoung.ca/learnToProgram © James Young, 2016

a. Use a for loop to draw the appropriate number of equally-spaced circles
from the window’s center to the mouse position. Do this in the draw() block
and erase the window every time.

b. Instead of using a fill color, you can tell Processing to not fill the circle at all
(make the circle see through) using the command noFill(); . Now it really
looks like a chain.

You don’t need to use any trigonometry in this question (although you do need to
find the distance from the center of the window to the mouse). The x values for the
centers of the circles will be equally spaced, and so will the y values. Find the correct
spacing to use in each direction with simple arithmetic, and you won’t need anything
else. Watch out for off-by-one errors!

 A lot of fancy cursors are used these days, with cool animations, to
keep you from getting impatient while you wait for
your computer to do something. (I’m not sure it really
works.) Here’s one for you to try to implement.

a. Make a ball that circles the mouse. We
have seen this before. You do not need a
for loop for this.

b. Use a for loop to draw n balls behind (in a
circle shape) that ball. Just calculate the
changing angle at some delta and draw
the new ball at that location

c. Change the ball size as you go along the
for loop to make it shrink

d. Change the ball color as you go along the for loop to make it fade out

 Here is another mouse cursor to
implement. A static picture is shown on the
right. There are N small circles (dots) in a ring
around the mouse cursor. All of them are
moving slowly clockwise. N-1 of them are in
a tight group, touching each other, and
moving at the same speed. One of them (the
white one) is not with the others, and is
moving twice as fast. When this “rogue” dot
catches up to the group of dots, then it should
join onto the trailing end of the group. The
leading dot should now break away and
become the “rogue” dot, moving twice as
fast. This will repeat forever. The effect is like “Newton’s cradle” (look it up in
Wikipedia), except in a circle. This might keep you entertained while you wait for
that huge file to download.

Ag

Au

Page 216 of 412 jimyoung.ca/learnToProgram © James Young, 2016

a. Use constants to define the number of dots (2 or more), the diameter of the
dots, the radius of their orbit around the mouse, their speed (change in angle
per frame), and the angle between the dots in the connected group. You can
experiment to get good values. The posted example uses 5, 8, 32,
PI/60, and PI/12, respectively.

b. You might want to use a multiplier other than 2 for the rogue dot’s speed,
relative to the others, but this is not required.

c. First try to get N-1 dots moving correctly around the mouse, without the
“rogue” one. Your program should handle any value of N (≥2) without
changing any other code at all. This is important.

d. Then add one “rogue” dot moving twice as fast (but just passing right through
the others).

e. Then try to detect when the “rogue” dot hits the others, and implement the
required effect. That’s the tricky bit, but it shouldn’t take much code. Good
luck!

 Drawing nice rounded curves on
computer screens is actually quite
challenging, and there are a lot of problems
and a lot of ways to do it. You will implement a
parametric quadratic curve – a curve that uses
a quadratic function to try and fit three different
points on the screen to a curve. This is quite a
challenging exercise.

The way that parametric curves work is to define
a variable, called t, that specifies how far along
the curve you are (e.g., as a percentage), and
then to use some formula to calculate an x and y
for that t. As you move along the curve (as the t
goes from 0...1), you get x,y points. If you draw lines between these points, you get
an approximated curve.

How smooth the curve is depends on how many points you draw. This, in turn,
depends on how small your steps of t are. For example, you could imagine large
steps of t only giving you four points: t=0, t=.25, t=.75, t=1. This is not a smooth curve.

First, we need to define what are called control points of the curve. These are the
three dots in the image shown, and they define points along the curve. We will call
these pt0 (start point), pt1 (some mid-point), and pt2 (end point). In your program,
you will have two variables for each point: one for the x component, and one for y.
In my example, pt0 is (0,height/2), pt1 is (mouseX,mouseY), and pt2 is
(width-1,height/2). Make sure to update pt1 each draw as the mouse moves!

Once you have your control points, we need to first solve for a quadratic function (a

Au

Page 217 of 412 jimyoung.ca/learnToProgram © James Young, 2016

parabola) that fits all three points. As you have hopefully learned, any two points
define a unique line, and any three points define a unique parabola. Here is a formula
for solving this. How that works (and how to parameterize a function) is beyond this
course – take more math! .

We need to first calculate the parameters of the curve. These are three points, a0,
a1, and a2, which will be the coefficients of our quadratic formula. These rely on a
t1 constant. Set t1 to 0.5 for now as a floating point variable constant. (once you
get the whole curve working then try t1 of 0.25 or 0.75 and you will see what this
value does!). You now have enough information to solve for your coefficients using
the following equations.	

ܽ଴ ൌ ଴ݐ݌

ܽଶ ൌ
ሺݐ݌ଵ െ ଴ሻݐ݌ െ ሺݐ݌ଶ െ ଵݐ଴ሻݐ݌

ଵݐ ∗ ሺݐଵ െ 1ሻ

ܽଵ ൌ ଶݐ݌ െ ଴ݐ݌ െ ܽଶ

This can be a little challenging. The first confusing point is that we don’t have a pt1
or pt2 variable, etc., since these both have x and y components. To do the above
calculations, you need to do it twice, one for the x, and one for the y. This results in
x and y for each of the a points.

Now that you have the coefficients, here is your quadratic formula:

ݐ݊݅݋ܲݐݑ݋ ൌ ܽଶݐଶ ൅ ܽଵݐ ൅ ܽ଴

Whew! This is a lot of messy math. But, now we have a parameterized curve (a curve
in terms of t) that defines our output. If we put t=0 in the above formula, we get our
first point. If t=1 we get our last point. For all the values of t in between, we get spots
along the curve. To draw the curve, we need to setup a for loop. Here is my
pseudocode:

 set number of steps along the curve, e.g., to 10.
 for 0 <= i < steps:
 t = i / steps; // percentage along the curve. careful of integer division!
 Calculate outPointX and outPointY as per above, using this t
 Draw a line from the previous point to outpoint

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

Page 218 of 412 jimyoung.ca/learnToProgram © James Young, 2016

(page intentionally left blank)

