

Page 219 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 ADVANCED LOOPS

Summary
You will see in this unit how loops scale up to solve more complex problems. In this
section, you will…

 Work through a range of problems that require loops
 See how loops can nest inside other loops

Learning Objectives
After finishing this unit, you will be able to …

 Use loops to solve a wide range of problems
 Create a nested loop to iterate two variables over a range of numbers

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 220 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Introduction
Loops seem to be one of the primary challenges faced by new programmers. The
previous chapter introduced you to basic loops and, for the most part, you have seen
all the syntax and mechanics that you need. However, where students often struggle
is in the application of loops. Even though you may understand the mechanics, it is
not obvious to see how to use loops to solve problems, or how loops scale up. For
example, what happens if you place a loop inside a loop?

This unit is primarily practice and expansion of the previous unit. However, this
doesn’t mean that you can gloss over it. Working through for loop examples is a
great way to bring all of what you learned together, and to practice your skills on
more advanced problems. This is why these two units are so long, because it is very
important.

First, let’s start with a larger example, and then get into new techniques.

 Example: Clickable Calendar
We have now learned enough tools to make a
simple clickable calendar. As always, a great place
to start is by defining a bunch of constants that
help define your calendar, at the top of your
program. In this case, we need to determine where
the calendar is located on the screen, how many
days are in the calendar, and the spacing between
the days (the grid). These are the numbers that I
used:

Next, let’s draw the header row – the titles for the days of the week. You can make
this look nicer by putting a background rectangle or changing color, but for simplicity
we don’t do that here. As always again, helper variables make our thinking a lot
easier. Let’s set a variable for the left and the bottom of the row – remember that
graphical text wants the x,y for the BOTTOM LEFT of the text. So, we add one
spacing to the top of the calendar to get the bottom of the first row.

final int CAL_TOP = 100;
final int CAL_LEFT = 100;
final int CAL_DAYS = 31;
final int CAL_SPACE = 30;

int bottom = CAL_TOP+CAL_SPACE;
int left = CAL_LEFT
text("S", left, bottom);

Page 221 of 412 jimyoung.ca/learnToProgram © James Young, 2016

To calculate the position for the next letter, M, we just add the space to the left
variable and draw again:

and so on. Draw all the letters this way. Unfortunately this is a little tedious. The good
news is that we’ll learn techniques later to simplify this kind of operation.

Next, let’s draw the calendar numbers using a for loop (why not a while loop?).
Use a single for loop through all the days of the month. Then, for each day, we can
calculate which row and column it is on.

To calculate the row and column we can just use integer math. This is a little tricky,
but try to work through it. If you divide the day number by 7, it tells you which week
you are on (with 0 as the first week). If you take the remainder, it tells you which day
of the week (column, with 0 as the first one). This is confusing, so look at this table:

day d/7 d%7 d/7 d%7 d/7 d%7
1 0 1 11 1 4 21 3 0
2 0 2 12 1 5 22 3 1
3 0 3 13 1 6 23 3 2
4 0 4 14 2 0 24 3 3
5 0 5 15 2 1 25 3 4
6 0 6 16 2 2 26 3 5
7 1 0 17 2 3 27 3 6
8 1 1 18 2 4 28 4 0
9 1 2 19 2 5 29 4 1

10 1 3 20 2 6 30 4 2

It just works out so nicely! So the row is the day / 7, and the column is the remainder.
Actually, we need to add 1 to our row since we already have the header on row 0.

Now we use that information to calculate the left and bottom location to draw our text.
I will add a helper variable in here called top since it will help out later.

left += CAL_SPACE;
text("M", left, bottom);

for (int day = 1; day <= CAL_DAYS; day++)
{
 // calculate row, column
}

int col = i%7;
int row = i/7+1;

left = CAL_LEFT + col*CAL_SPACE;
int top = CAL_TOP + row*CAL_SPACE;

Page 222 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Now we have a nice calendar! The next step is to let the user select a day and to
highlight the day that is selected. We can highlight it just by drawing a square as in
our calendar image.

To do this, we need a global state variable that remembers or knows which square
to highlight. For testing, let’s just highlight day 5 by default:

Then, in our draw loop, we need to check which day we are drawing. If we are
drawing the selected day, then we put a highlighted square around it. In my case, I
set the colors, too.

This only draws a square behind the selected day. Be careful of draw order! Now,
how do we change the selected day based on where the user clicks? How can we
detect if the mouse is clicked on a particular calendar square? Well, we already know
the left, bottom, and top of each calendar square. If we calculate the right side, then
we have all the information we need to do hit testing.

Further, instead of doing the match to calculate where the mouse is, we can do it
inside the for loop on each day. On each day, let’s test if the mouse hit it, and if so,
update our selected day.

Now as the user clicks on a day, it gets selected!

There are two more things we should do. First, the calendar should default to not
having any day selected. The way we do this is to set our selected initially to an
impossible day, so that our if statement comparing to the day never gets true. 0 is

bottom = top + CAL_SPACE;
text(str(day), left, bottom);

int selected = 5; // day currently selected

if (day == selected)
{
 rect(left,right,CAL_WIDTH,CAL_WIDTH);
}

int right = left+CAL_SPACE;
if (mousePressed &&
 mouseX >= left && mouseX < right &&
 mouseY >= top && mouseY < bottom)
{
 selected = day;
}

Page 223 of 412 jimyoung.ca/learnToProgram © James Young, 2016

an impossible day, so change the global definition to

The final thing to do is to enable the person to unselect the day. How about, if the
person clicks but they do not click on the calendar, then we unselect the day? How
can we do this?

This is a little tricky. What we can do is this. Before going through drawing the
calendar and checking every single day if it was clicked, we create a boolean that
tells us if a day has been hit or not. Let’s default it to false, as no day was hit.

Then, as we go through the calendar, if we ever get a hit on a day, we set that
boolean to true. Finally, after we check all the days, if we got NO hit, but the mouse
is pressed, then we unselect the day. That’s it! We now have a fully interactive
calendar. A lot of new things popped up in this example, so be sure to study it. Here
is my final code:

int selected = 0; // impossible day, nothing selected

boolean hit = false;

final int CAL_TOP = 100;
final int CAL_LEFT = 100;
final int CAL_DAYS = 31;
final int CAL_SPACE = 30;
int selected = 0;
void setup()
{
 size(500, 500);
}

void draw()
{
 background(0);
 fill(255);
 // draw title bar
 int bottom = CAL_TOP+CAL_SPACE;
 int left = CAL_LEFT;
 text("S", left, bottom);
 left += CAL_SPACE;
 text("M", left, bottom);
 left += CAL_SPACE;
 text("T", left, bottom);

Page 224 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 left += CAL_SPACE;
 text("W", left, bottom);
 left += CAL_SPACE;
 text("R", left, bottom);
 left += CAL_SPACE;
 text("F", left, bottom);
 left += CAL_SPACE;
 text("S", left, bottom);
 left += CAL_SPACE;

 boolean hit = false;
 for (int day = 1; day<= CAL_DAYS; day++)
 {
 int col = day%7;
 int row = day/7+1;

 left = CAL_LEFT+CAL_SPACE*col;
 int right = left+CAL_SPACE;
 int top = CAL_TOP+CAL_SPACE*row;
 bottom = top+CAL_SPACE;

 if (mousePressed &&
 mouseX >= left && mouseX < right &&
 mouseY >= top && mouseY < bottom)
 {
 selected = day;
 hit = true;
 }

 if (selected == day)
 {
 rect(left, top, CAL_SPACE, CAL_SPACE);
 fill(0);
 } else
 {
 fill(255);
 }
 text(str(day), left, bottom);
 }
 if (mousePressed && !hit)

Page 225 of 412 jimyoung.ca/learnToProgram © James Young, 2016

To expand this example, try setting which day of the week the calendar starts on, or
fixing the highlighting to be better centered. Additionally, how would you highlight
weekend days?

 Nested Loops
Loops can be tricky. As I said before, an important element of really getting loops is
to memorize the mechanics – what happens at what stage. This is particularly
important as we move into nested loops: you can put a loop inside another loop.

In a previous example, we drew a grid of lines using a for loop – we could iterate
across the gaps, and draw one line at each gap. For a 10x10 grid, this took 22 lines.
What if we wanted to draw a grid of small dots? Let’s say we want a grid of 10 by 10
dots, which requires 100 dots. How would you go about doing it?

You could do it with one for loop, if you iterate i from 1...100, and then determine
the grid coordinates depending on the i. This is similar to the calendar example
above. Perhaps a more straightforward method is to use a nested for loop.

Note: since a code block acts like any other code, you can put a loop or if
statement inside of any loop or if statement. Nested
just means one thing inside another.

What happens if we put one for loop inside another?
There is nothing special here, all the same rules of
programming apply. However, it becomes a little tricky to
keep in your head. Look at the following code:

Both of these for loops should make sense to you. The first one iterates i from 0...9
(remember – the loop quits when i <10 is false!). The second loop iterates j from

 {
 selected = 0;
 }
}

int count = 0;
for (int i = 0; i < 10; i++)
{
 for (int j = 0; j < 10; j++)

{
 count++;
 }
}
println(count);

gridX = i%10 * size,
gridY = i/10 * size!

Page 226 of 412 jimyoung.ca/learnToProgram © James Young, 2016

0...9. But how do they combine? Keep in mind that computers work on the
mechanics. After the i loop is started, it runs the block. Inside the block, it starts the
j loop. The catch is to realize that, each time the i-loop block is run, the whole
0...9 j loop runs. Let’s step through

 count is set to 0
 the i for loop initiates, i is 0, block is run
 the j loop initiates, i is 0, j is 0, block is run
 count gets increased to 1.

 the j loop checks j<10, true, j becomes 1, block is run
 count gets increased to 2.

 … continue until j<10 is false
 the i loop checks i<10, true, i becomes 1, block is run again
 the j loop initiates, i is 1, j is 0
 the entire j loop runs again.

 … repeat while i<10 is true

As this illustrates, the inside j loop gets completely run for each time through the
outside block.

Study the above steps. This is very important. One thing that I recommend for
people to do is to try to solve a nested for loop on paper: first, make a chart of the
current i and j values. Then, go through the loops step by step and record all the
changes that happen to those variables.

What does print output? What is the final value of count? To figure this out, we do
some basic math.

The i block runs 10 times. Each time the i block runs, the j block runs 10 times.
Therefore, the j block runs 100 times total, and increments count 100 times. Count
starts at 0, so count ends at 100.

To test this, try running the following code:

Here, the output shows you what happens to i and j. Is it what you expect? What
changes if you reverse the order of the for loops?

for (int i = 0; i < 10; i++)
{
 for (int j = 0; j < 10; j++)
 {
 println(i+" "+j);
 }
}

Page 227 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Example: A Dot Grid
Use a nested loop to draw a grid of ellipses, 10 by 10. First, we make one for loop
to go through all the columns.

Let’s also make a loop to go through all the rows. Since we will be combining these,
let’s use a different variable name

Now we can combine these loops. The way we should think about it is as follows.

For each column in our grid…

 Go through each row in the grid…

 Draw an ellipse

Turning this into code:

As in our previous example, the whole for loop on j gets run for each value of i. So,
when i = 0, we will get j all the way from 0...9. Then, when i =1, we will get the
whole range on j from 0...9 again. This way, we will hit every combination of i and
j in the 0...9 range.

To draw the ellipse, we just need to convert from the grid coordinates to the screen
coordinates. We have done this before. First we calculate how wide each grid cell is,
and multiply it by how many grid cells along we are:

for (int i = 0; i < gridSize; i++) // go through the columns
{
}

for (int j = 0; j < gridSize; j++) // go through the rows
{
}

for (int i = 0; i < gridSize; i++) // go through the columns
{

for (int j = 0; j < gridSize; j++) // go through the rows
{
 // draw the ellipse
}

}

int x = width/gridSize * i; // column
int y = height/gridSize * j; // row

Page 228 of 412 jimyoung.ca/learnToProgram © James Young, 2016

There is one final thing we can try. Even though we
have a grid of 100 dots, and, we see the entire grid at
once, the computer only draws one dot at a time. We
can do a trace to see the order that the dots are drawn
in. We can do this by drawing a line from the previous
point, to the current point. That way, we can follow the
line to see what order the points were drawn in. Try
implementing this on your own, and then try changing
the order of the for loops (i and j) to see what
happens.

 Example: Raster
“Raster” sounds complicated, but it’s just the idea of setting each pixel color on the
screen individually. This is how pictures work – it stores a brightness or color for each
dot, and draws them on a grid, and you get a picture. Let’s play with setting each
dot’s color based on some calculation to see how it looks.

To do this, we will use a nested for loop to go over every single pixel on the screen.
Then, we will draw a point at each x and y coordinate. This is very similar to the
previous example, except we can setup our loops based on the size of the window:

To recap – the first loop goes through each possible x coordinate across the screen.
At each x coordinate (column), we then run down all the possible y coordinates. The
whole y for loop is run at each x. This way, every pixel on the screen is touched.
Here, we give it a random color, so we get what is called white noise.

If you do this as a static program you will quickly see the result. However, if you do
it as an active program, you may notice that you program is very slow – if it’s not,
you have a fast computer! We are doing a lot of work here, and using some pretty

ellipse(x,y,2,2);

// go over each x coordinate
for (int x = 0; x < width; x++)
{
 // at each x, go over each y coordinate
 for (int y = 0; y < height; y++)
 {
 stroke(random(255));
 point(x,y);
 }
}

Page 229 of 412 jimyoung.ca/learnToProgram © James Young, 2016

heavy-handed techniques. If you stick with computer graphics, you will learn
advanced methods to speed this kind of operation up. For now here are two things
you can do to make your program reasonably faster:

 Add the command noSmooth(); to your setup block. This turns off some extra
work the computer does to make your program look nice.

 Shrink your screen size. Half the size (250x250) actually has 1/4 the dots!

So far, this is a pretty boring example which sets every pixel to a random color.
However, now that we have this basic setup, we can change things. How about we
set the color based on how far it is from the mouse? Remember, the high-school
math formula for calculating the distance between two points (in this case, the mouse
and a point) is

We can do this easily. We already know how to subtract numbers. To square them,
we can just multiply by itself, using some helper variables just for clarity. We just
need one additional command, which actually came up in an exercise in Unit 7:

And we can develop the following code:

Now that we have the distance, let’s just set the point color to the distance:

There is one small unsettling thing here, though. The distance on your screen
between a point and the mouse may be larger than 255, our maximum color.
Processing is very robust and doesn’t mind you doing this, but we should be better
behaved and handle it properly. Why don’t we loop the color around, using modulo?
That is, before drawing our point, let’s instead calculate the color as follows:

That is, if dist is bigger than 255, c will wrap around from 0 again. Your output
should look like the inset on the next page. The hard line from white to black is where
the distance equals 256 – this makes a perfect circle, which makes sense, as this
defines the same distance from the mouse!

float sqrt(float number); // gives the square root of a number

float diffX = mouseX - x;
float diffY = mouseY - y;
float dist = sqrt(diffX*diffX+diffY*diffY);

stroke(dist);

float c = dist%256;

Page 230 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Here is my final program:

You can play with what formula is used to set the pixel color, which can be a lot of
fun. For example, try some of the following ones that I whipped up. Unless you are
really mathematical, don’t bother trying to figure out why they look the way they do

float c = (dist*dist)%256;
float c = (dist*x)%256;
float c = (dist+x-y)%256;

Try to animate these visualizations by using a
moving offset. That is, add an offset to the colors,
and make the offset increase or decrease each
frame. This will add a psychedelic effect!

 Example: Tic-Tac-Toe board
Let’s do a basic tic-tac-toe board. At this point we won’t make a game of it, but will
just put the basic board in place, and do hit detection with the mouse – to detect

void setup()
{
 size(500,500);
 noSmooth();
}

void draw()
{
 background(0);
 stroke(255);
 for (int x = 0 ; x < width; x++)
 {

 for (int y = 0; y < height; y++)
 {

 float diffX = mouseX - x;
 float diffY = mouseY - y;
 float dist = sqrt(diffX*diffX+diffY*diffY);
 float c = dist%256;
 stroke(c);
 point(x,y);
 }
 }
}

float c = (dist*x/(y+1))%256

Page 231 of 412 jimyoung.ca/learnToProgram © James Young, 2016

which square is being clicked on.

The first part of this example is to draw the board. Since the tic-tac-toe board is only
a 3x3, we could probably do it manually. However, it’s cleanest if we do it using a
nested for loop. The way to think about this is to use two loops – one for each
dimension (rows, columns), and then realize that inside the loop, each cell of the
game board is hit.

As always, we should make things as general as possible, so let’s start by putting
some global variables at the top of the program.

Why didn’t I initialize the center coordinates, or the left and top coordinate? The
reason is because these are dependent on the size of the canvas. Since we will
change the canvas size in our setup code, we need to wait until the canvas is set
before we calculate these:

Now, we need to setup our for loop to draw the 9 tiles of our board. In this case, it
makes most sense to use a nested for loop to hit each tile, with one loop going across
the width of the board and the other across the height. First, let’s setup our for loops:

final int BOARD_GRID = 3; // how many squares
final int BOARD_SIZE = 250; // how many pixels
final int TILE_SIZE = BOARD_SIZE/BOARD_GRID;
int boardCenterX;
int boardCenterY;
int boardLeft;
int boardTop;

void setup()
{
 size(500, 500);

 // center of the screen
 boardCenterX = width/2;
 boardCenterY = height/2;

 // board is centered, so left/top is half size off center
 boardLeft = boardCenterX - BOARD_SIZE/2;
 boardTop = boardCenterY - BOARD_SIZE/2;
}

Page 232 of 412 jimyoung.ca/learnToProgram © James Young, 2016

To draw the tiles of the board, we should use the rect command. This requires the
top and left of the rectangle, as well as the width and height. We already know the
width and the height, which we calculated as TILE_SIZE. The left and top can be
calculated by starting at the left and top of the board, and coming in by how many
tiles we are at. That is, the left of tile i is boardLeft + i*TILE_SIZE. The top is
calculated similarly. Inside the nested loop, then we can do the following:

I also set the stroke color to 127 with the fill to
255. You should now see the image in the inset.

Now let’s work on how to identify which box the
mouse is in. Instead of thinking about how to do
the math up front, the for loop already puts us
within each square, one at a time, with the left
and top calculated. We can do this right inside
the loop and, when the mouse is inside a
square, let’s change the fill color to 127.

This is just like our previous example of clicking
a button, except now we are doing it inside the
for loop. I would add the following helper
variables to make the whole thing clearer. Make
sure to add these inside the nested loop since they are specific to the particular
square:

Then, the logic to determine if the mouse is inside a square is straight forward. The
only gotcha here is the borders. Pay attention to my particular solution and I’ll explain
below.

for (int i = 0; i < BOARD_GRID; i++)
 {
 for (int j = 0; j < BOARD_GRID; j++)
 {
 // draw the tile i,j
 }
}

int left = boardLeft+ i*TILE_SIZE;
int top = boardTop+ j*TILE_SIZE;
rect(left,top,TILE_SIZE,TILE_SIZE);

int right = left+TILE_SIZE;
int bottom = top+TILE_SIZE;

Page 233 of 412 jimyoung.ca/learnToProgram © James Young, 2016

The logic is straight forward – if it’s bigger than the left AND less than the right,
we are in the X range. Also, if it’s below the top AND above the bottom, then we
must be inside the tile. In my case, I used the >= on one side and the < on the other
side. The equals includes the border, so what I effectively did was to include the left
and top border in this square, and exclude the bottom and right border (for the next
squares). Quickly add additional logic to test if the mouse is pressed as well. You
now have a basic setup for a tic-tac-toe board! Here is my final code:

if (mouseX >= left && mouseX < right && // in X range
 mouseY >= top && mouseY < bottom) // in Y range
{
 fill(127); // a hit
}
else
{
 fill(255);
}

final int BOARD_GRID = 3; // how many squares
final int BOARD_SIZE = 250; // how many pixels
final int TILE_SIZE = BOARD_SIZE/BOARD_GRID;
int boardCenterX;
int boardCenterY;
int boardLeft;
int boardTop;

void setup()
{
 size(500, 500);

 // center of the screen
 boardCenterX = width/2;
 boardCenterY = height/2;

 // board is centered, so left/top is half size off center
 boardLeft = boardCenterX - BOARD_SIZE/2;
 boardTop = boardCenterY - BOARD_SIZE/2;
}

void draw(){

Page 234 of 412 jimyoung.ca/learnToProgram © James Young, 2016

There are a few things to note here. If you hold the mouse button down and drag it
across the board, the tile that is highlighted changes and follows the mouse, where
you would want only the tile that was actually clicked to change. You can achieve
this with some clever logic that you would have seen earlier, in the boolean logic
chapters. Another way is to use advanced event handling (look up the
mousePressed() method function on the reference manual) that we will not learn
quite yet.

Also, you may want to save some game state into variables. You would need a
variable for each square, and although this is possible with the tools you learned so
far, it would be very tedious.

Try updating the board to draw an X or an O in the square when clicked!

 background(0);
 stroke(127);
 for (int i = 0; i < BOARD_GRID; i++)
 {
 for (int j = 0; j < BOARD_GRID; j++)
 {
 // borders of tile i,j
 int left = boardLeft+ i*TILE_SIZE;
 int top = boardTop+ j*TILE_SIZE;
 int right = left+TILE_SIZE;
 int bottom = top+TILE_SIZE;

 if (mouseX >= left && mouseX < right &&
 mouseY >= top && mouseY < bottom &&
 mousePressed)
 {
 fill(127);
 }
 else
 {
 fill(255);
 }

 rect(left,top,TILE_SIZE,TILE_SIZE);
 }
 }
}

Page 235 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Example: draw a dice face
While this may not be the simplest way to do it, this technique for drawing a dice face
is great practice for your nested for loops and boolean logic.
First, let’s setup a nested for loop that draws a 3x3 grid of dots.
Here are my supporting globals:

Then, the for loop setup is straight forward from examples we did previously:

This will give you a 3 x 3 grid of dots. To make a dice shape, we need to put an if
statement in front of the ellipse, to only draw dots when certain conditions are
met. Let’s think about the dice #3, first, which consists only of a diagonal. Well, how
do we define a diagonal in our grid? One diagonal is when i = j: 0,0 1,1 and
2,2. So let’s try changing the ellipse code as follows:

You now should have a 3 dice! Let’s do 5 next, which is a little trickier. First, we can
see that we can make a 5 by doing two diagonals. We have the one diagonal, but
how can we get the other? Try writing the coordinates out:

int DICE_GRID = 3; // 3x3 dice face
int DICE_SPACING = 100; // space between dots
int DICE_LEFT = 100; // dice position
int DICE_TOP = 100;
int DOT_SIZE = 40;

// iterate through the columns
for (int i = 0; i < DICE_GRID; i++)
{
 for (int j = 0; j < DICE_GRID; j++) // rows
 {
 // calculate position of dot
 int x = DICE_LEFT+i*DICE_SPACING;
 int y = DICE_TOP+j*DICE_SPACING;

 // draw dot
 ellipse(x, y, DICE_TOP, DICE_TOP);
 }
}

if (i == j)
{
 ellipse(x,y,dotSize,dotSize);
}

Page 236 of 412 jimyoung.ca/learnToProgram © James Young, 2016

2,0 1,1 0,2. Can you see a pattern? This is similar to the diagonal one above
except the x coordinate is backwards. As i goes up, 0,1,2, how can we convert
that i into 2,1,0? You can take the maximum, 2, and subtract i from it. This is
confusing so check out the following table

i 2-i j

0 2 2

1 1 1

2 0 0

Still confused? Draw it out on paper. Notice how I put j down backwards? This
illustrates that when 2-i == j, then our i,j gives us the coordinates we want. So,
we can get the coordinates for the opposite diagonal when (2-i) == j.

Finally, we can combine the two diagonals with a simple OR operator:

And we’re done!

 Example: Nested While Loop
While loops can be nested just like other loops,
if statements, etc. Let’s do a quick example.

We will make a program that acts unpredictably.
The interface pauses for a random amount of
time, and draws lines to the mouse point – the
longer it paused, the more lines you get.

There are a lot of ways to make a program
pause. We will use a technique called a busy
loop, which basically makes work and wastes
computer power to kill time. In a later course you
will learn why this should be avoided at all costs,

if ((2-i) == j)
{
 ellipse(x,y,DOT_SIZE,DOT_SIZE);
}

if (i==j || (2-i) == j)
{
 ellipse(x,y,DOT_SIZE,DOT_SIZE);
}

Page 237 of 412 jimyoung.ca/learnToProgram © James Young, 2016

but it’s a fun exercise .

In order to wait a random amount of time, we will basically roll dice.

 Pick a random number up to MAX
 If the roll is a 0, we’re done. While it’s NOT zero,
 Pick another random number.

The larger that MAX is, the less likely we are to get a 0, and the more times the loop
runs. Next, let’s add some lines EACH TIME we don’t roll a zero. Our updated
algorithm is:

 Pick a random number up to MAX
 If the roll is a 0, we’re done. While it’s NOT zero,
 Pick another random number.
 Draw 5 lines from random locations to the mouse.

Keep in mind that while this loop is running, the draw block never finishes, and the
screen doesn’t update. So, the longer the while loop runs, the longer the animation
freezes.

Implement a while loop for the outer random number guesser first. Approach this
with the priming, test, and upkeep mentality. I have ODDS set to 500.

We start with a random number. If it’s not 0, we pick another one, and check again.
Repeat. This will take some time.

Now we need to update the loop, and each time we get a random number, we need
to draw that many lines. The nested loop we could do with a for loop, but use a
while for practice. This should be straight forward, so try it on your own.

 Check Your Understanding: Exercises

 Re-implement the dot grid example (draw a 2D grid of dots), and
make the following changes:

int i = (int)(random(ODDS));
while (i != 0)
{
 // draw lines
 i = (int)(random(ODDS));
}

Check your Understanding

CuSn

Page 238 of 412 jimyoung.ca/learnToProgram © James Young, 2016

a. Make the size of the ellipse depend on how far it is from the mouse.
Figure out the maximum distance, and linearly scale the actual
distance to a reasonable size range.

b. Make the color of the ellipse depend on how far it is from the mouse.
Use the same logic as in a, but map to colors instead.

 Update the dice face example to include all the usual 6 numbers. In
each case, only use one if statement, and try to minimize how many checks you
need. 4 may be the hardest, as you can do it with just two equal’s tests.

a. Try implementing functions to draw the faces and an if-else chain to
turn a number into a graphic. You can now use this in a game.

 Create a nested for loop to iterate over each pixel on the screen,
after first clearing the screen to black. Then, use the following logic to choose the
color:

a. If x*y is divisible by 2, then make the color white. Otherwise, make the
color black. How does it look?

b. Change 2 to 3, then 4, etc., and run the program each time. Do you
see a pattern? What numbers give you a grid of perfect squares? Why
would this be? (it’s tricky).

 Computers might help you
hypnotize your friends! You will make a
hypnosis-helper tool, as shown in the
screenshot at right. In the Exercise 4 in the
previous Unit, you drew an approximated
circle by using angles that increased in a for
loop. To make a spiral instead of a circle,
increase the radius, too, as you go along. Then
the spiral can easily be animated in several
different ways. Implement this program in
three short phases:

a. Draw a spiral using a single for loop, and basic trigonometry. First, define
the following named constants:

DRAW_STEPS: The number of line segments that you will draw to make the
spiral. Try a value of 250 to start with. This must be an integer variable, so
that you can reliably use it in a for loop.

MAX_RADIUS: The maximum radius that will be reached when the last line
is drawn. Use a 500 by 500 window, and set this value to 250√2. (That’s the
distance from the centre to any corner. If you change the window size, you’ll
have to change this value, too.)

CuSn

CuSn

CuSn

Page 239 of 412 jimyoung.ca/learnToProgram © James Young, 2016

numTurns: the number of turns you want in your spiral. This is not a named
constant because we will change it later. Try a value of 5 to start with.

Now use a single for loop to draw exactly NUM_STEPS lines. The first one
should start in the center of the window. Use the command noSmooth();
in the setup() block to speed up this program if it’s slow. Each line should
connect the previous point to a new point (remember the previous point).
The first point is the window’s center.

The angle to the new point on the spiral should be 0 for the first line, and
increase steadily, by equal steps, to 2π*numTurns for the last line. You will
need to do linear scaling from your steps to the radians for this.

b. Make the spiral rotate by adding a constant “offset” value to the angle (it no
longer goes from 0 to 2π*numTurns, but instead goes from offset to
2π*numTurns+offset). Start this offset at 0, and increase it slightly each
time you draw. Try increasing it by 0.1 radians each time (use a named constant,
of course). The spiral should now rotate. (“You are getting sleepy.”)

c. Also make numTurns increase slightly every frame. Try making it change by
0.1 turns per frame (use another global named constant). More and more
“loops” of the spiral should be drawn as this value increases. They will lose
their smoothness, since more turns are being drawn, but the number of lines
used to draw them hasn’t changed. This produces a cool effect. Now change
your program so that the turns of the spiral stay equally smooth as the number
of turns grows. (This isn’t as cool, though, so save the old code, too.)

 Use a nested for loop to make a prime checker. Make a global
constant called MAX_CHECK, and set it to 1000 – this determines how many
numbers to check.

a. Make a loop to go from 1 to MAX_CHECK, inclusive
b. For each of these numbers, use a second loop to count how many

factors it has. Hint: a number n is a factor of p if it divides evenly into
p. (use mod). If the factors are exactly 2, then print out a statement
telling the user that the number is a prime.

c. If you increase MAX_CHECK, this quickly gets
very slow. Can you think of an easy way to
speed this up?

 You will visualize what the sine function
looks like in “1D” and in “2D”. The image at right shows
the 1D version with just over 4 cycles. Remember that
the sine function is periodic (it repeats) with a period of
2π. As the angle goes from 0 to 2π, the sine function

Ag

Ag

Page 240 of 412 jimyoung.ca/learnToProgram © James Young, 2016

goes from 0 to +1, then to -1, then back to 0. You
will map a sine value (-1 to +1) to 0...255 to
obtain a greyscale color. -1 should give black, 0
should give medium grey, and 1 should give
white. That is what you see in the image above.

a. Use a for loop and tightly-spaced vertical
lines (one per x coordinate across the
screen), to draw an image such as the one
shown on the previous page. (add
noSmooth(); to setup() to increase speed and use a smaller canvas
size, such as 300 by 300).

Set a global variable numCycles (in part b it will change, so not a constant)
to the number of cycles of the sine function to plot (try 4.0).

Set the line color based on the x coordinate, by converting the position from
0 to width-1 to the sine angle, 0 to numCycles*2*PI (hint: use
percentages). Then translate the output from the sine of this value (-1 to +1)
to a greyscale value (0 to 255).

b. Now you can move to an animated 1D image. Make numCycles controlled
by mouseX . It should change from 0 to MAX_CYCLES as mouseX
changes from 0 to width-1. Try MAX_CYCLES at 12.

c. Now, we will move to a 2D image. Instead of using
lines, you will need to set the color at each pixel using
the point command. Use two for loops, nested, to
hit every pixel. First, simulate question b by setting
the color based on the x only, as above. You should
get the same output (but probably slower).

Now, update your program to also do a sine
calculation in the y direction. You will need to set the
number of cycles in the y direction, and repeat all the sine and scaling
calculations to get a y value. First, ignore the x and set the color based on
the y only. Once this works, then average the x and y color to get your result.
This is what the sine function looks like in 2D!

Try using color!! Instead of averaging the colors, try using stroke(xColor,
yColor, 0); which looks cool!

 Optical illusions!! Quick! Are the alternating bands in the image
below the same color, or are some lighter or darker than the others? They are
actually exactly the same color, with the only color differences being at the
borders! This is called the Cornsweet effect. You will implement it so that you
know for yourself that the bands are of the same color.

Au

Page 241 of 412 jimyoung.ca/learnToProgram © James Young, 2016

a. Basic image. Use a global constant BANDS to
control the number of vertical bands in the
image. The image at right uses 4 bands. Most
of each band will be the same color (128,
medium grey), but the bands should either
darken or lighten at the edges. Use global
constants to control what proportion of each
band is the “fade in/out” region on each side,
and how much the color will change from the
default value of 128. (The image shown uses
20% on each side – 40% total, and fades
in/out by 100 – giving grey values from 28 to
228.)

Use for loop(s) to draw the image. You can either use one loop to generate
every x coordinate across the canvas, but it may be easier to use two: one
for the band number, and one for the position within the band. You can do
either one. Use vertical lines, not individual points, to draw the image,
spaced tightly so that you draw them 1 pixel apart (or very close to it).

Even numbered bands (if you start at band 0) should brighten from 128 to
128+MAX_CHANGE on both edges, but odd numbered bands should darken
from 128 to 128-MAX_CHANGE instead. Notice that the change is smooth,
with a linear change.

b. Animated image. Link the amount of fade to the mouseX value, so that when
the mouse is at the left (0), there is no fade out at all (so you should get a
solid grey screen), and when the mouse is at the right (width-1), the bars
change completely to white/black at the edges. Now you can see the illusion
more clearly.

 You will draw a message, with each character having its own size
and color, as shown on the right, with the size proportional to the frequency of
the letter in the message. This is not an Active Processing program (there is no
animation).

a. Store the message in a global constant, and only
use lower-case letters. Determine algorithmically
which character appears the most in the text.
That is, find the maximum frequency of
occurrence of any character in MESSAGE. Do not
count vowels (a, e, i, o, u) or blanks, since they
occur far too often, and spoil the effect. Print the
character with the maximum frequency, with its
frequency (count), to the console, to test this. In

Au

Page 242 of 412 jimyoung.ca/learnToProgram © James Young, 2016

the sample shown, ‘s’ appears most often (7 times), whereas ‘z’, ‘b’, and ‘!’
only appear once.

b. Go through the MESSAGE, drawing one character at a time to the canvas.
Each character should have its own size and color. Vowels (a, e, i, o, u)
should be fixed to VOWEL_COLOR, and all other characters should be
TEXT_COLOR, drawn against a BG_COLOR background. A non-vowel, non-
blank character having the maximum frequency (determined in part a)
should be LARGEST_TEXT pixels in size, whereas one that only appears
once should be SMALLEST_TEXT pixels in size. Others should have a size
somewhere in between, proportional to their frequency. All vowels and
blanks should have a size halfway between those two extremes, regardless
of frequency. To space the characters, you can use the function
textWidth(s) to find the width w of any string s, in pixels, at the currently
selected font and size. (Because anything can be converted to a String, s
can really be any data type at all.) Begin the next character w pixels to the
right of the current character, where w is the width of the current character.
To test the program so far, draw characters starting at x=0, y=height/2, and
let them disappear off the right edge of the canvas.

Phase 3: Draw the message on as many lines as necessary. Draw all lines starting
at x=MARGIN. Draw the first line with the characters at y=FIRST_LINE_Y. Whenever
you have to start a new line, increase the y coordinate by LINE_SPACING. Draw as
many characters as you can on the current line. But if drawing the current character
would go beyond width-MARGIN, then start a new line before drawing that character.
Now the program should give the result shown in the sample image.

 Make a status bar on a prime
number calculator. When computers are
working hard, users want feedback on the
progress. If the computer waits until it is done
all the work before giving an update, the user
may be waiting a very long time and may
worry that the program crashed. Status bars
are a great way of keeping users informed.

You will implement a program that finds the
10000th prime number. Here are my globals:
PRIMES_TARGET = 10000, BATCH_SIZE
= 100, STATUS_BAR_WIDTH = 250,
STATUS_BAR_HEIGHT = 50,
primesFound = 1; // assume that 1 is already counted, nextPrime = 2,
done = false;

We defined a BATCH_SIZE – this tells us how many numbers to test if they are prime,
before updating the user. Here is a sketch of the program:

Au

Page 243 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Do a batch (use a for loop) of numbers to test, run the loop BATCH_SIZE
times
 Check if nextPrime is a prime. See exercise 5 above:
 Increase nextPrime for the next check.
 if we found enough primes, change our boolean to signal we are done.

And don’t do any more simulations. NOTE: what if you are in the middle
of a batch?? How do you end the for loop early? Hint: modify the for loop
condition to also rely on the done variable

 draw a random line with a random color to signify that a number was
checked

 After the batch is done, draw the status bar using two rectangles, which
shows how many primes were found out of our target maximum. Hint: use
two rectangles, one for the whole box, one for the filled amount.

This example illustrates an important usability issue. It is important to give people
feedback, but the computer has to do wok to provide this feedback. If you provide
too much feedback, it slows the real work (prime checking) down. Play with the batch
size to see how the speed changes. Also note that the checking is slower as you go
along, because it takes more work to check a large number than a small one.

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

Page 244 of 412 jimyoung.ca/learnToProgram © James Young, 2016

(page intentionally left blank)

