

Page 319 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 ARRAYS AND MEMORY

Summary
You will learn a about how arrays are stored in computer memory, specifically:

 The difference between data in a variable and data in general memory
 Basics of how a memory address is stored, and how to say “no address”
 How this impacts basic array operations like copying and comparing

Learning Objectives
After finishing this unit, you will be able to …

 Determine the default value stored in your arrays immediately after creation
 Use and compare variables against null
 Copy an array
 Compare an array

How to Proceed
 Read the unit content.
 Have a Processing window open while you read, to follow along with the

examples.
 Do the sets of exercises in the Check your Understanding sections.
 Re-check the Learning Objectives once done.

Page 320 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Introduction
Unlike other variables we have used so far, to use an array, you cannot simply make
a variable and then use it. We have a new step, we need to instantiate the array with
the new keyword.

Why this new step? Why don’t we do this with our other variables? Well, we don’t do
it with any of the primitives at all, because what is stored inside the variable is actually
the data. This may sound obvious, but in the case of arrays, the array data isn’t
actually stored in the variable, it’s stored somewhere else.

This is also the case for strings, and any objects once you learn object oriented
programming. In Processing, a lot of the mess of Strings is hidden from you with nice
syntax, but weird things are going on behind the scenes.

When you create an array variable, just like any variable, you need computer
memory to store the data. For arrays, the computer doesn’t know how much memory
you need until you instantiate the array, because it doesn’t know how many bins you
will need. Therefore, it doesn’t know how large to make the variable. The solution is
the following:

 We store arrays in general computer memory (not in the variable), so we can
decide how large it needs to be later.

 The array variable only stores the address of where the array is in general
memory. We need to store this address to keep track of where the array is, after
we create it

 We know how large an address is, so Processing is happy to create your variable.

To reiterate:

The array variable stores an address to the array. Until we give it an address, the
variable is uninitialized, just like any other variable.

When we know how large we want our array, we need to ask the computer for some
memory.

The new int[100] command actually is asking the computer to go off and find us
some empty memory, large enough to store 100 integers (how many bytes is this?).
Once the computer finds this memory, reserves it (puts up a fence, marks it as taken),
and gives us the address. Imagine the computer is going land shopping for you, finds
just the right size, puts up tape so no one else can take it, and tells you where it is.

Processing stores that address in our variable.

int[] intArray; // variable stores an address to an array.

Page 321 of 412 jimyoung.ca/learnToProgram © James Young, 2016

To reiterate, the new keyword goes off and finds a chunk of memory big enough to
store 100 integers in this case, and gives the address, which is then stored in
intArray. Most of this time, this memory issue is invisible to you. When you use
arrays, you don’t usually think about memory addresses.

However, the above command actually takes a trip out to the memory that you have
saved, takes your 4, and stores it in the 5th bin in your memory.

We can actually take a peek at the memory address, just to prove a point. This is not
only advanced, but not actually very smart – only really advanced programmers, and
even then, only in very specific situations, look at memory addresses. For most of
us, it’s a waste of time. However, for the purpose of peeking at what is happening,
here is a silly trick to get Processing to give us the memory address. Concatenate
the array with a string.

The memory address will be something weird, like [I@1f3f158. Computers have
a very systematic way of storing memory, which doesn’t really make sense to us.

As an example, when we create our variable, we just get a variable in our program.

However, when we create a new array:

The computer searches its memory, finds enough space for our 100 integers, and
marks off the space. Every time we use intArray, it actually goes off to that
address and works there. E.g.,

intArray[4] = 20;

Goes off to that plot of memory, puts a number 20 in bin 4, and comes back.

Here is a series of visuals of what is going on. Here is our modern computer with
loads of ram.

intArray = new int[100];

intArray[5] = 4;

println(""+intArray);

int[] intArray;

intArray = new int[100];

Page 322 of 412 jimyoung.ca/learnToProgram © James Young, 2016

When the intArray variable is created, it
has no memory address, and cannot be
used. After new is called, then intArray
stores the address of the section of memory
we have to store our array data. Then, when
intArray is used, the computer actually
goes off and changes that memory.

Although I said we generally don’t think
about arrays and memory, there are some
key times when we do, so you need to clearly understand this. Particularly when you
start tossing arrays to functions, and wanting to do things like shrink or grow an array,
you need these fundamentals down pat.

 Default value of array entries
In Processing, what happens when we create a variable, do not initialize it, and then
try to use it? For example:

If you try to run this, you get an error. Processing says “the local variable variable
may not have been initialized.” This makes sense. Since we put nothing in the
variable, what should the println do?

This is a feature of many languages. The compiler looks and can detect this instance,
and refuse to use a variable that has never been set to a value.

Unfortunately, this isn’t a trivial thing for the computer check. When working with
arrays, it gets even harder. In fact, Processing just gives up. Let’s try the following
similar example. We create an array variable, instantiate the array, but do not put
any data in the array bins:

This time it works! Huh? Why? That variable is not initialized!

Because it’s hard for the computer to detect which array bins are initialized and which

int[] intArray;
intArray = new int[100];
intArray[4] = 20;

int variable;
println(variable);

int[] intArray = new int[10];
println(int[0]);

1GB RAM!

(modern looking computer, Word clipart)

int[100]

Page 323 of 412 jimyoung.ca/learnToProgram © James Young, 2016

are not, Processing has a workaround. When you create an array, it does a bit of
work and fills the array with default values. This way, we know what is in the variable.
If you imagine the land analogy I used earlier, when the new keyword finds and
cordons off your new memory, it sends in a bulldozer to clear the memory to some
default state.

What are these defaults? The defaults depend on the data type.

 For integer types, including the character, the default value is 0. Careful
(Advanced): for characters, this is the ASCII code 0 and not the character '0'.

 For Booleans, the default is false
 For Strings (and all objects), the default is null

Wait – what? null? What the heck is null? We’ll get to that very shortly.

Generally be careful of relying on default values. That is, you may think: I know that
my numbers get set to 0, so I will rely on that fact. This is not a bad idea, but the
problem is, other languages may treat this differently, (e.g., C or C++) creating a very
hard to find bug! Be clearly aware of the parameters of your computer programming
language.

Advanced: Depending on the compiler and run-time environment, C or C++
programs may not clear the array memory at all, and give you whatever data was
there previously. That’s right, who knows what could be there. Make sure you
understand the default value policy of the language and platform you are using.

 null – no memory address
Remember how we talked about how array variables store the memory address to
the array? Strings (and all objects) actually work the same way. That is, your string
variable only stores the address of where the string is in memory. Again, nice
Processing syntax hides this from you, but the string itself is stored off in memory
the same as an array.

What if the variable does not yet have an address in it? Computers have a special
value which means no address. In computer science, this is called null: no
memory address.

For example:

your output is null. Try it.

Processing has a special keyword, null, that you can use to refer to this special
value. For example, you can check if an array bin in a string array is empty by

String[] names = new String[10];
println(names[0]);

Page 324 of 412 jimyoung.ca/learnToProgram © James Young, 2016

comparing it to null:

But! You may be thinking that we should never use == with strings. We’ll come back
to this later in this unit.

Another point: null is not the same as the empty string! This is confusing as heck,
but an empty string is still a string, with length 0. null is not a string at all, and if you
try to check its length, the program crashes.

You get a problem called “null pointer exception.” Means there is no string to check
the length of.

Look at the following code and visual
that shows how the three different
strings are stored in memory:

s1 doesn’t point anywhere, since it is
set to null and does not have an
address. Both s2 and s3 point to their
own respective strings in memory. The
empty string is still a string, the same
as "wow!”, it just has length 0.

Finally, null cannot be used for primitives. You cannot set an integer or float variable
to null, since these variables store your actual data and not a memory address.

 Copying Arrays
How do you make a copy of a primitive variable like an integer or floating point? This
should be obvious:

String[] names = new String[10];
if (names[0] == null)
 println("bin 0 is empty");

String[] names = new String[10];
println(names[0].length());

String s1 = null;
String s2 = "";
String s3 = "wow!";

int i = 1982;
int j = i; // copy i into j, j now 1982
i = 1999; // replace i

1GB RAM!

(modern looking computer, Word clipart)

""

"wow!"

Page 325 of 412 jimyoung.ca/learnToProgram © James Young, 2016

The output is, as you’d expect:

i has the new value, 1999. j remembers the copy it took from i earlier, 1982. This
works as you should expect, no surprises here. Let’s do something similar with an
array

What is the output?

The top array is i, and the bottom is j. i originally had 1 in bin 0. We copied i to j,
hopefully preserving that old value, so we expect that j is the old i. Then we modify
the i array to store 1999 in the bin. However, both arrays are updated!! This is
confusing, how can we update two arrays just with one command?

In order to understand what happened we need to think again about arrays and
memory. First, let’s create i. We have a variable, and create a new array off in
memory to store the 1,2,3. The variable points to the memory address.

When we create the array variable for j, it doesn’t point anywhere at first. When we
set it to i, Processing does exactly what it does for all variables: copy the values!
Unfortunately for us i does not hold the array, but rather, holds the memory address
of the array. Therefore, Processing copies the memory address from i to j, and j
gets the same memory address.

Consider the following graphic and code:

println(i + " " + j); // what is the output?

1999 1982

int[] i = {1, 2, 3};
int[] j = i; // copy i into j..?
i[0] = 1999; // change i only
println(i);
println(j);

[0] 1999
[1] 2
[2] 3
[0] 1999
[1] 2
[2] 3

Page 326 of 412 jimyoung.ca/learnToProgram © James Young, 2016

When i is created, we get a new array
in memory. When i is copied into j,
however, we just copy the address, so
both i and j have the same address,
they both point to the same array in
memory. When we set i[0] to 1999, it
gets the address from i, goes off to
memory, and changes that single array.
As such, both the i and j arrays appear to be changed.

This didn’t copy the array at all, just copied the memory address from one
variable to another. We now have two variables that work on the same piece of
memory, the same array.

What we wanted was this: (not working code)

We want an actual copy in memory,
for Processing to create a new
array, so that we can modify one
and the other doesn’t change.

In this visual, if we change the first
bin in the array pointed to by j, then
this doesn’t impact i. Our code
above doesn’t work, but how can
we achieve this?

This requires two steps:

 Create a new array with the
same size.

 Copy the data over from the old array to the new one.

That is, we have to do it manually.

int[] i = {1, 2, 3};
int[] j = i;
i[0] = 1999;
println(i);
println(j);

int[] i = {1, 2, 3};
int[] j = ..? somehow copy i, and save into j..?

1GB RAM!

(modern looking computer)

{1, 2, 3}

1GB RAM!

(modern looking computer)

{1, 2, 3}

{1, 2, 3}

Page 327 of 412 jimyoung.ca/learnToProgram © James Young, 2016

We can create a new array using the syntax we already know. Then, we can copy
data over from the old array into the new one using a for loop.

 Comparing Arrays
Comparing arrays introduces similar problems as copying arrays. Our traditional
mechanisms do not make intuitive sense unless we think about arrays and memory.
Look at the following example:

What do you expect will happen? We can see that the arrays have the same data
stored in them, so if we use == to compare them, we would expect to get true.
However, if we run this, the result is false.

The reason for this is that the == compares what is in the variables: the memory
addresses. Since we have two arrays, they are at different locations in memory.
When we compare them, of course
they are false.

Consider the same code again but
with the visual aid:

Here, you can clearly see that,
although the i and j arrays store the
same data, they have different

int[] i = {1, 2, 3};
int[] j = new int[i.length]; // new array same size as i

// copy i into j
for (int bin = 0 ; bin < i.length; bin++)
 j[bin] = i[bin]; // bin-by-bin copy

i[0] = 1999; // only i is modified. j is different array
println(i);
println(j);

int[] i = {1,2,3};
int[] j= {1,2,3};
println(i==j);

int[] i = {1,2,3};
int[] j= {1,2,3};
println(i==j);

1GB RAM!

(modern looking computer)

{1, 2, 3}

{1, 2, 3}

Page 328 of 412 jimyoung.ca/learnToProgram © James Young, 2016

addresses. Therefore, the result of the == operation is false.

In fact, this is why you cannot use == for strings. It just compares the memory
addresses of where the strings are stored, which is generally not what we want. If
we want to see if two strings are equal to each other, we actually need to compare
string down to the characters themselves.

So, when we compare arrays, what we really want is a deep comparison: we need
to look at each bin individually and see if they are equal across the arrays. We can
do this with a for loop, and the following algorithm:

 Assume the arrays a,b are equal
 Go through each bin i in the array with a for loop
 if a[i] does not equal b[i], then the array isn’t equal

In code:

At the end of this, if there is any bin i where the arrays do not match, then the arrays
are considered to be not equal.

What if the array is very big, and, we find out very early (in the first bin!!) that the
arrays are not equal? The above code will keep on trucking and continue checking
the entire array – a complete waste of work. How can we quit the for loop as soon
as we find out they are not equal? We can modify the boolean test in the loop to
continue also while they are still considered to be equal:

The for loop will quit when either of the conditions are false: not equals, or, i is not
less than length.

// assume we have two int arrays, a and b, of the same length
boolean equals = true;
for (int i = 0; i < a.length; i++)
{
 if (a[i] != b[i])
 equals = false;
}

// assume we have two int arrays, a and b, of the same length
boolean equals = true;
for (int i = 0; i < a.length && equals; i++)
{
 if (a[i] != b[i])
 equals = false;
}

Page 329 of 412 jimyoung.ca/learnToProgram © James Young, 2016

With strings, we do not need to do this work because someone has already written
the code for us. We get to use that function using the method .equals on the strings
involved. However, under the hood, they do a very similar operation.

 Example: wandering star!
Let’s make a program where we have a 5 pointed
star, with its points wandering around (moving
randomly). If the mouse is clicked, return them to
their original locations.

We will do this by making two arrays for the points
of the star, one for x and one for y. In the draw, we
use a for loop to draw lines between all the points,
and, move each point randomly. When the mouse
is clicked, we want to return to the original points – but how do we do this? As we
modify the points to move randomly, then we lose the original positions! We need to
copy them, to back them up.

We need two sets of arrays

 The original points
 A copy of the points, that we modify to make wander around. We can change

this copy without changing the original.

First let’s make the original points. I will give you the data:

Note that these two arrays are the same size. At bin 0, we have the x,y for point 0,
at bin 1 we have the x,y for point 1, and so on.

Then, let’s setup our draw loop to draw them. Note that we need five lines, and use
modulo to wrap around the last point to 0.

Add code to make each point move by a random amount up to some maximum. I

float[] xOriginal = {100, 140, 40, 160, 60};
float[] yOriginal = {40, 160, 80, 80, 160};

for (int i = 0; i < xOriginal.length; i++)
{
 int next = (i+1)%xOriginal.length;
 line(xOriginal[i], yOriginal[i],

 xOriginal[next], yOriginal[next]);
}

Page 330 of 412 jimyoung.ca/learnToProgram © James Young, 2016

have my max set to 3 in a variable called WANDER. Make sure to do this inside the
for loop, for each point. You could use a separate for loop for this, but we’ll combine
for now to save work:

If you make sure to setup properly, clear the background, and set the stroke color,
you should see a 5-pointed star that wanders around.

However, we need to add the functionality of setting the points back to their original.
In our current version, we modify the original points so they are lost. What we need
to do, instead, is to first make a copy of the points, and work on those. That way, we
still have the original ones for use later.

Let’s add the two new arrays and instantiate them with the proper size, at the top of
the program:

This will serve as our copies.

First, create a void function that copies those original points, verbatim, into the new
arrays. This will make the new arrays have the exact same points as the originals.
Since we already instantiated the copy arrays, all we need to do is to copy all the
data from the bins straight over, like we did in the previous section.

for (int i = 0; i < xOriginal.length; i++)
 {
 int next = (i+1)%xOriginal.length;
 line(xOriginal[i], yOriginal[i],
 xOriginal[next], yOriginal[next]);
 xOriginal[i] += random(2*WANDER)-WANDER;

 yOriginal[i] += random(2*WANDER)-WANDER;
 }

float[] xPoints = new float[xOriginal.length];
float[] yPoints = new float[yOriginal.length];

void copyOriginal()
{
 for (int i = 0; i < xPoints.length; i++)
 {
 xPoints[i] = xOriginal[i];
 yPoints[i] = yOriginal[i];
 }
}

Page 331 of 412 jimyoung.ca/learnToProgram © James Young, 2016

We can now use this to copy the original points into our new arrays. Let’s first do this
on program startup, and also when the mouse is pressed.

The next piece of the puzzle is that the draw block needs to be updated so that,
instead of using the original arrays, it uses the copies. This way, we are drawing and
moving the copied points, while not touching the originals. When the mouse is
pressed, we re-copy the originals into the copies so that it starts over.

Here is the whole program.

final float WANDER = 3;

float[] xOriginal = {100, 140, 40, 160, 60};
float[] yOriginal = {40, 160, 80, 80, 160};
float[] xPoints = new float[xOriginal.length];
float[] yPoints = new float[yOriginal.length];

void setup()
{
 size(500, 500);
 copyOriginal();
}

void copyOriginal()
{
 for (int i = 0; i < xPoints.length; i++)
 {
 xPoints[i] = xOriginal[i];
 yPoints[i] = yOriginal[i];
 }
}

void draw()
{
 background(0);
 stroke(255);
 if (mousePressed)
 copyOriginal();

 for (int i = 0; i < xPoints.length; i++)
 {

Page 332 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Check Your Understanding: Exercises

 Does the following code return true or false?

 Using the == operator on arrays and strings does not compare the
array or string, but it is still correct code. When would you want to use this? Why
is it even allowed?

 What is wrong with the following code?

 Using your knowledge of arrays and memory, explain what happens.

 Given some array of integers a, make a new array b that is double
the size of a, and has the data from a in the first half of its bins (all of a).

 Implement a series of special array comparison techniques that
compares two arrays, a and b.

a. Given two integer arrays, they are considered equal if a) they have the same
length, and b) the data in them sum to the same total.

b. Given one integer array and a floating point array, they are considered equal

 int next = (i+1)%xPoints.length;
 line(xPoints[i], yPoints[i],
 xPoints[next], yPoints[next]);

 xPoints[i] += random(2*WANDER)-WANDER;
 yPoints[i] += random(2*WANDER)-WANDER;
 }
}

float[] a = {100, 140, 40, 160, 60};
float[] b = {100, 140, 40, 160, 60};
println(a==b);

float[] a = {100, 140, 40, 160, 60};
a = null;
println(a[0]);

Check your Understanding

CuSn

CuSn

CuSn

CuSn

CuSn

Page 333 of 412 jimyoung.ca/learnToProgram © James Young, 2016

if a) they have the same length, and b) the floating point values cast to
integers equal the values in the integer array.

c. Given one integer array and one boolean array, they are considered equal if
a) they have the same length, and b) an even number corresponds to true,
and an odd number corresponds to false.

 Make a program that generates 10 random points on startup, and
stores it in two arrays (one for x and one for y). In the draw block, put ellipses at
each point in random colors.

a. If the mouse is pressed, double the number of points, adding new
random ones. As the array size changes, it should not lose its data,
and, the rest of the code should work properly.

b. If the keyboard is pressed, halve the number of points, removing every
second point.

Learning Objectives

How did you do? Go back to the beginning of the unit and check how you measure
up to the learning objectives.

How did you do?

Ag

Page 334 of 412 jimyoung.ca/learnToProgram © James Young, 2016

(page intentionally left blank)

