

Page 383 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 INTRODUCTION TO OBJECTS
Objects are not an official part of this course, and this section is not testable.
However! Objects are awesome and so I thought it would be great to put them in the
notes.

Objects are the next natural progression in this material. So far, we learn a new
technique, find the limitations, and learn another new technique to overcome those
limitations. Our latest limitation is that it is very hard to pass around a lot of data to
and from functions. Also, you end up getting larger and larger messes of variables
for components of your program, which becomes unmanageable as your program
grows. For example, let’s make a bad guy that flies around a screen. The bad guy
has an x value, a y value, a width, a height, a color, and a move speed.

We have learned how to scale this up to 1000 bad guys, using arrays. That is easy.
There are remaining problems, however. Imagine a function to draw this bad guy. It
may look like this:

this is tedious, but doable. Every time we call this we have to type in all of those bad
guy properties. It gets worse if we have more properties (rotate speed? Bullets left?
Health? Shape? 10 others?).

Another problem is that we can only return one value from functions, and we cannot
change those values in a function. So the following function simply is not possible.

We can use max speed to move the bad guy, but we cannot get the modified x and
y out of the function. It is lost, because only the local copies in the function are
modified.

The solution to this is objects. Object oriented programming is a huge topic, and
there are many advanced avenues and dusty corners – you will learn about it in great
detail in a Computer Science degree. However, basic objects are not so bad, and

int badGuyX;
int badGuyY;
int badGuyW;
int badGuyH;
int badGuyClr;
int badGuyMaxSpeed;

void drawBadGuy(int x, int y, int w, int h, int clr,
int maxSpeed);

void moveBadGuy(int x, int y, int maxSpeed);

Page 384 of 412 jimyoung.ca/learnToProgram © James Young, 2016

you have learned a lot of the skills already needed to make them.

Basically, objects are a nice way to collect data in a clean wrapper. You can “chunk”
data together. For example, a BadGuy object would have a bunch of properties, such
as an x, y, w, h, clr, maxSpeed, and many others. We setup an object to have all
this in one package, and then we can use it like other types. We can pass an object
to a function, and pass an object back, and everything stays grouped together.

 Creating Your First Class
We have many data types in processing. We have the primitive types (int, float,
etc.), and the array types. We also have String, which we mentioned before, is an
object.

To create our own objects, that work a little like the String type, we need to define
our own, new, data type. This is called a class. Then, once we create this new type,
we can create new variables that use this type. Finally, there is a new step for actually
making the object work.

Perhaps the best way to explain this is to show it.

First, in processing, you need to add a new tab, which adds a new file, to your project.
Click on the down arrow next to your project name:

And choose “new tab”. It will ask for the file name. Type in BadGuy. A new tab
appears that has no code in it.

Select this tab, and we can type more processing code in here.

To create our own object type, we need to learn new special syntax to make our first

Page 385 of 412 jimyoung.ca/learnToProgram © James Young, 2016

class. The syntax of a class is very simple:

We can specify a class name, and now our program has a whole new type that we
can use. Convention has classes start with a capital letter (like String!) and it is
good practice to call the class the same as the tab / file name (this is required in pure
Java). We will call our class BadGuy:

So far, this is not very exciting. We have created our own class, but we did not put
anything into it. It turns out that we can put stuff inside the class, and it all gets
grouped together under the BadGuy name. For one, we can add variables (which is
where this example started). We can also add other things, like functions (called
methods when they are part of an Object), but that is for a later course.

Let’s add a collection of variables that define the bad guy.

We can make any variables in here we want, just like in our main program. Arrays,
too!

Now, be careful: You cannot store data in these (yet). At this point, you are just
defining your brand new data type. A class just specifies what will be in an object if
you create one, what kinds of data can be stored. This is just a blue print, a template.
We need to learn how to make objects first!

class ClassName
{
} // end class

class BadGuy
{
}

class BadGuy
{
 int x;
 int y;
 int w;
 int h;
 int clr;
 int moveSpeed;
}

Page 386 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Instantiating Your First Objects
Classes are a new data type that we created. We cannot actually store data in a type,
we need to make variables with that type.

Go back to your main tab. Now that we created a class called BadGuy, we can use
this like any other data type in our program – just like String, for example. Let’s
make three global variables for the bad guys:

So making variables using your new class is easy. However, we need to learn some
new things before you can use them. Just like arrays, you need to instantiate your
object before you can use it. Also, these variables, just like arrays, only store the
address of where the object is in memory – this has all the implications that arrays
have, e.g., for use with functions, and the == operation.

 You need to instantiate an object before you can use it, similar to how you must
instantiate an array.

 The object variable only stores a memory address of where the object is located
in memory.

To instantiate an object, that is, to create a new object, we need to use the new
keyword. There is a small difference from arrays: you put () after, like a function call:

For example:

The new command goes off to memory (just like with arrays), allocates enough
memory to store those variables you defined in BadGuy, and comes back with the
memory address. The memory address is then stored in the variable for use later.
Let’s do it for all three:

Just like with arrays, when we call new three times, we get three different spots in

BadGuy b1;
BadGuy b2;
BadGuy b3;

ClassType variable = new ClassType();

BadGuy b1 = new BadGuy();

BadGuy b1 = new BadGuy();
BadGuy b2 = new BadGuy();
BadGuy b3 = new BadGuy();

Page 387 of 412 jimyoung.ca/learnToProgram © James Young, 2016

memory. We have three bad guys, all with their own copy of the variables inside of
them. They are stored at different locations, and changing one does not change the
other, they are separate!

Here is a rundown of the terminology we use:

class – the blueprint of the data to be stored and functionality to be included

object – an actual instance of a class in memory that can be used to store data, as
described in the blueprint

instance – see object

Note: sometimes, there are nuanced differences between the term instance and
object, depending on the language. For most people they are the same.

 Accessing Instance Variables inside Objects
Now that we have created the three objects, we need to learn how to access the
object’s variables (called instance variables since there is one set per instance of the
object). You do this by putting a dot after the variable name, and then following with
the variable name.

for example

What happens here, is that Processing looks inside b1,

this now acts just like any other variable. You can add to it, subtract from it, use it in
a formula, etc.

For example, we can setup one of our bad guys in the setup block:

object.instanceVariable

b1.x

void setup()
{
 size(500,500);
 b1.x = 10;
 b1.y = 10;
 b1.w = 100;
 b1.h = 50;
 b1.clr = 255;
 b1.moveSpeed = 10;

Page 388 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Remember: here we don’t use the new keyword because the object has already
been created (instantiated) globally. Just like with arrays, objects always need to be
instantiated.

We can use this to move, and then draw, the bad guy, in the draw block. The same
as above, we use these like any other variable:

So this should work, but so far we are not really saving much work. I could do the
above example without objects, and just make my own variables; I would even save
typing while at it!

 Objects and functions
The power of Objects starts to become obvious when we use them with functions.
Classes are just another type, so we can toss objects back and forth from functions
no problem. Further, because objects work like arrays – we toss the memory address
around and not all the data – functions can actually modify the object.

Let’s make a new function, that generates a new BadGuy and sets it to some random
values. It doesn’t take any parameters, but will return the new bad guy

 Create a new object instance of BadGuy
 Set the instance variables to reasonable but random values
 Return a reference to the object (the memory address). Make sure to set the

return value of your function to the Class type as below

Try it out. This is what I came up with

}

void draw()
{
 background(0);

 // move bad guy
 int move = (int)random(b1.moveSpeed*2)-b1.moveSpeed;
 b1.x += move;
 move = (int)random(b1.moveSpeed*2)-b1.moveSpeed;
 b1.y += move;

 // draw bad guy
 rect(b1.x, b1.y, b1.w, b1.h);
}

Page 389 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Now we can use this to create as many bad guys as we want. Since we instantiate
the object in this function, we don’t need to do it at the top of the program any longer.
Also, update your setup to call this function and set your b1, b2, b3 to their own
random bad guys.

We now have three random bad guys! Let’s make two more functions. First, let’s
draw a bad guy:

This takes in a BadGuy variable, and uses the instance variables to draw as needed.
Next, let’s make a function to move a BadGuy around. This is new! This was not
possible before, without objects. It should take a BadGuy variable, modify it in place,

BadGuy newRandomBadGuy()
{
 BadGuy b = new BadGuy();
 b.x = (int)(random(width));
 b.y = (int)(random(height));
 b.w = (int)(random(MAX_WIDTH)); // 100
 b.h = (int)(random(MAX_HEIGHT)); // 100
 b.clr = (int)(random(255));
 b.moveSpeed = (int)(random(MAX_SPEED)); // 10
 return b;
}

void setup()
{
 size(500,500);
 b1 = newRandomBadGuy();
 b2 = newRandomBadGuy();
 b3 = newRandomBadGuy();
}

void drawBadGuy(BadGuy b)
{
 stroke(b.clr);
 fill(b.clr);
 rect(b.x, b.y, b.w, b.h);
}

Page 390 of 412 jimyoung.ca/learnToProgram © James Young, 2016

and not return anything.

This function takes a reference to a bad guy (a memory address), and uses that to
get the instance variable values, AND, change them. Changes made here are
permanent inside the object that was passed to us.

All we need now is to update our draw block:

This is very powerful. Combine this with arrays, and – wow! We can do a lot. Keep
at CS and you will learn even more powerful tools.

void moveBadGuy(BadGuy b)
{
 int move = (int)random(b.moveSpeed*2)-b.moveSpeed;
 b.x += move;
 move = (int)random(b.moveSpeed*2)-b.moveSpeed;
 b.y += move;
}

void draw()
{
 background(0);
 moveBadGuy(b1);
 moveBadGuy(b2);
 moveBadGuy(b3);
 drawBadGuy(b1);
 drawBadGuy(b2);
 drawBadGuy(b3);
}

