

Page 391 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 INTRODUCTION TO JAVA
As I said earlier, Processing is basically Java. However, to work in real Java, you will
need to let go of the graphics for now, and, learn about all that syntax that Processing
kept hidden from you. In addition, you need to have a shift in thinking about how you
approach your problems.

Your work in processing followed a very fixed model: you have a draw loop, and
some global state, and each frame, you update your state. The update can be based
on calculations (e.g., a falling ball), input (a mouse click), or even random values.
Although you have seen some examples that either use static processing, or the
noLoop(); command, to make the program run only once, this has been the
exception.

In Java, like in most programming languages, things work a little differently. When
you start your program, your code only runs one time, and then finishes. There
is no draw loop, there is no repetition. If you want to have an animation or some kind
of event loop that happens, e.g., on a timer (like Processing, 60 times a second) or
input (mouse press). This is a lot like the static programs you made, except that they
are fully functional, with functions, arrays, etc.

This may look to be a simple distinction, but as a result of this, many of your
programs will look quite different than your programs to date. In Processing, most of
your work has been in state management. From time to time, you have done data
pre-processing, but that was less of your work. State-management programming is
only one paradigm and one kind of problem to solve; the world of programming is
much bigger.

One common model of programming is the input-process-output model. Your
program gets some data (e.g., from a file, from the user), and stores that data
somehow in variables. Then, once input has been all received, you process the data
to get some result – e.g., you may average the data, check validity, etc. We provide
example of such problems in this chapter.

It is strongly recommended to complete the exercises in this chapter in preparation
for your next programming course in pure Java. This will not only refresh your
memory on the basics learned in this course, but will give you some experience in
pure Java that you will need to succeed as you continue.

 Moving to Java
There are two very important differences that you need to address when moving to
Java:

 Processing gives you a free and easy-to-use graphics library. Java doesn’t do
this (it takes a lot more work).

 Processing is a wrapper around Java that simplified the syntax.

Page 392 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Luckily, the non-simplified syntax it isn’t so bad for the most part. Much of the syntax
is related to object oriented programming. Even if some of the keywords do not make
sense to you yet, you will learn them in your first course on objects, very quickly.

To get Java working, you need:

 A Java Compiler
 An editor that will run the Java tools for you
 To learn the new Java syntax

You should use the official Java Compiler, from Sun. This is called the JDK – Java
Development Kit – and it includes all the software needed to compile and run your
Java programs. Before we jump in, however, let’s talk a little more about the changes
of moving to raw Java.

Getting the Java Development Kit. The language and terminology surrounding
Java is very confusing – those people love acronyms. You will want to get the Java
SE version (Standard Edition). Make sure to get the newest version of it. Instead of
putting a link here, your best bet is to go to google and type in Java SE JDK.

Don’t get the JRE – that only lets you run Java programs, not compile and make
your own.

If you are having trouble getting this to work, try uninstalling all Java versions that
may be on your computer already. Java has a lot of versions and they have a way
of getting in the way of each other.

Java Editor. There is no “standard” Java editor, for example, like Visual Studio for
C#. There are many that you may have heard of, as shown here. You can find these
below using google.

 Dr Java is a teaching tool, a Java editor for learners and beginners.
 Textpad is a similar tool, but for windows only.
 Eclipse is a professional tool for Java development.
 BlueJ is the official editor of Green Foot, which is another graphics system for

Java
 Sublime is a popular IDE that runs on many platforms.

I personally recommend Eclipse – it may be like jumping off the deep end of a pool,
but once you learn it, there is a great deal of power in that editor.

To get started, download eclipse, and un-zip it into a target folder. Ask someone to
help if you are less familiar with this kind of task.

When you start Eclipse, it will ask you which workspace to use. You probably don’t
have a workspace setup, so just select the default. (Alternatively, you can save on

Page 393 of 412 jimyoung.ca/learnToProgram © James Young, 2016

your DropBox or other backup tool, although there are a lot of files it creates that
makes backups busy)

When you first start Eclipse, and choose your workspace, you will see a page along
the following lines:

To get started, click the “Workbench” icon on the top right.

Then, you want to create a new project. It is a good idea to save each assignment,
lab, etc., as its own project. Inside one project, files can conflict with each other.

To do this, go File->New->Java Project (if you only have Project and not Java
Project, select Project and inside that window, select Java. If there is no Java, you
may have downloaded the wrong Eclipse version).

A pop up window comes up with all kinds of settings. All that you need to do is to
create a project name.

Type FirstProject in the project name and click “Finish”

Page 394 of 412 jimyoung.ca/learnToProgram © James Young, 2016

You will see your project on the left,
in the “package explorer” section.
Click the down arrow and you will
see that it is linked to the JRE
System Library (basic Java), and
you have a folder called src. This is
where you put your source files. That
is, your programs that you type up.

Right click on the src folder, click
“new” and click “class”. Again, you
are presented with a whole slew of options. All that you need to do is to give it a
name “FirstClass”, and click finish. It will warn you not to use the default package,
but ignore that for
now.

Now you have a
source file open,
ready to take in your
first Java program!

The above two steps –
getting Java installed,
and getting an editor,
is perhaps your
biggest hurdle in the
transition. Once the
software is setup, it
gets easier.

Once you type programs, you can compile and run them by pressing the “run” button,
the green and white triangle on the toolbar.

 Basic Java Syntax
The basic Java syntax is a little different than what you may be used to. Unlike
processing, where you can just start typing a program, all Java code requires basic
object-oriented syntax, even if you’re not using it. That is, all code must be in a
class (see the previous unit regarding what a class is). When you create your first
program, you do so by creating a class wrapper (syntax below), and place all your
code inside of that.

Second, all Java programs start at a function called main. In Processing, your
program started at setup and then wend to draw. Here, it’s simpler: when you run
your Java program, the main function runs one time, and then the program quits.

Page 395 of 412 jimyoung.ca/learnToProgram © James Young, 2016

Below I provide a template with all the above components in place. There is some
syntax that looks confusing, but you will learn about it soon. For now, public is
an access modifier – it specifies which parts of the program can access those
components. static means that the code should work even without instantiating
an object. The void main takes some parameters since the program that starts
your program can send some strings in, an array of strings, in fact.

Important: Your class name FirstProgram MUST MATCH your file name
“FirstProgram.java”. This is a Java standard, and it won’t work if you don’t do
this.

If you run this program, Java will run the main function, and end the program. In this
case, absolutely nothing happens, because your main is currently empty. Again:
unlike in processing, Java does not have a draw loop that gets called continuously
– if you want that, you will have to learn how to build it yourself. All that Java does is
to call your main function once, and stop.

Except for very few exceptions, you cannot put code outside the class. You can make
variables and functions inside the class, like you are familiar with; we will see
examples of this soon.

Java is strongly typed, just like Processing, which means that every expression and
variable has to have a specific type, and, it’s a pain to go between types.

One key difference between Processing and Java is that, for floating point numbers,
Java defaults to double, while Processing defaults to float. For example, the
following would work fine in Processing but does not work in Java:

This does not work because 1.23 defaults to the double type, and you cannot store
a double in a float. You can fix this with a cast:

Other than that, the Java types should work as you have seen in Processing.

public class FirstProgram {
 public static void main(String[] args)
 {
 }
}

float f = 1.23;

float f = (float)1.23;

Page 396 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Standard Commands
The above program is pretty useless, as there are no commands in the main. We
need to learn some commands in pure Java.

Unlike in many languages, in Java you often fully describe where in the system’s
command hierarchy (actually, object hierarchy) a command is located, in order to
use it. Translation: it’s ugly and messy. This means a lot of memorization, as many
commands require this full description.

Perhaps the most basic command is tossing text out to the console. You do this with:

This command is almost identical to the Processing version, except you tell the
computer first to look in the System library, then in the out section, and use the
println command from there. Toss the following command into your main
function:

And run your program (Run->Run). You should see the message “hello there” pop
out at the terminal or console in your editor. Make sure to find this, as it can be hard
to find, but the console is very useful and very important.

This println command is not exactly like the Processing version, as Processing
has a few features. For one, if you try to print an array, Java just gives you the
memory address stored in the variable (mostly useless) – if you want to print the
array contents, you need to do it yourself with a loop.

You also have the Math commands, which include the familiar commands max, min,
sin, random, and so forth. You use these by prefacing them with Math.:

Java has a pretty handy (but hard to navigate) reference manual online. For example,
the following explains all the functions in the Math library:

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

In general, you can save time by being familiar with this reference to lookup the
specifics of the tools you will use.

 Libraries
In addition to built-in Java commands, Java comes with an extensive library of

System.out.println(<some variable or text>);

System.out.println("hello there");

int i = Math.max(10,20);
System.out.println(i);

Page 397 of 412 jimyoung.ca/learnToProgram © James Young, 2016

additional code that you can use. However, if your program wants to use additional
libraries, you need to tell Java to link to that library. It does not do this by default for
efficiency reasons.

To link to a library, you need to use the import command. This goes at the very top
of your program, outside the class definition:

For example (we’ll use this in a minute): The asterisk symbol (*) is commonly used
in computer science to mean “all”.

 Getting Basic User Input
Unlike in Processing, getting user input in Java is not nearly as nice. Forget about
the mouse for now, or detecting individual key presses. Let’s start by getting a full
string from the user.

To do this, we need to use a new class called Scanner. Scanner connects to input
sources (like the keyboard) and gives us some commands to get text from that
source. Scanner is an object, so we need to use special syntax to get it working.

We need to set it up by making a new object. In addition, when we create the object,
we have to tell it which input source we want. We will use the standard input (defaults
to keyboard), which is specified by System.in. We can call this variable whatever
we want. This syntax may look a little nicer if you completed the previous unit.

This creates a new Scanner object, connects it to the keyboard, and stores a
reference in the keyb variable.

If you try this, Java will say that it cannot find the command, unless you properly
import the library. At the top of your program, import java.util.*, since
Scanner is not a part of the basic command set.

Once Scanner is setup as above, you can then use the object to perform operations
to read the keyboard (specifically, to read the standard system input).

Scanner has a whole collection of methods (commands tied to an object) built in.
One such command is nextLine(), which pauses the program, and reads a line
of input from standard in. It will pause until you hit enter after typing something in.
IMPORTANT: you did not see this often in Processing, as the program often ran

import <library name>;

import java.util.*; // import whole util library

Scanner keyb = new Scanner(System.in);

Page 398 of 412 jimyoung.ca/learnToProgram © James Young, 2016

continuously and you just read the input state at any time. Here, the program pauses
completely, and waits for user input. It un-pauses when the user hits enter to end
their line of input.

This command returns a String that you can store somewhere or use in an
operation.

You can keep re-using the object variable to get more input; don’t create the object
again, only create it once at the beginning of your program.

Here is my full program, including the library import, the class (with a name that
matches the file name), the new main function, and all the new funny object-oriented
syntax. Further, there is two cases of input on the same object variable.

Try to run this program, and once it’s running, you can click on the console and type
something in. After you press enter, the program will continue. In this case, it will
echo back what you typed.

 Exercise: Echo loop
Make a program that does the following:

 Asks the user for input, and gets a line from the user
 While the input is not empty (that is, not the empty string), echo’s the output to

String s = keyb.nextLine();
System.out.println("you typed: "+s);

import java.util.*;
public class FirstProgram {

 public static void main(String[] args)
 {
 Scanner keyb = new Scanner(System.in);
 System.out.println("type in the console: ");
 String s = keyb.nextLine();
 System.out.println("you typed: "+s);
 System.out.println("what is your name: ");
 String name = keyb.nextLine();
 System.out.println("your name is: "+name);
 }
}

Page 399 of 412 jimyoung.ca/learnToProgram © James Young, 2016

the console, and loop again.

This program should be pretty straight forward as you have now learned everything
that you need to get it to work. The main gotcha is to realize that you need a while
loop, since you don’t know how many times the user will type in data. Try this on
your own – setup a new program in Java from scratch – before looking at my solution:

Can you guess how the print command works in comparison to the more familiar
println?

One problem with this example is that we re-use some text, when really, they should
be in global finals. In Java, you always put your code inside the class, so your final
variables also need to be inside the class. There is on gotcha here – when you make
a final constant, you need to add the static keyword on the declaration (see below).
The reason for this is that we are not yet using the object oriented features. You will
learn about that soon:

import java.util.*;

public class FirstProgram
{
 static public void main(String[] args) {
 Scanner s = new Scanner(System.in);
 System.out.print("Give input:");
 String input = s.nextLine();
 while (!input.equals(""))
 {
 System.out.println("You typed: "+input);
 System.out.print("Give input:");
 input = s.nextLine();
 }
 }
}

import java.util.*;

public class FirstProgram
{
 static final String PROMPT = "Give Input: ";

 static public void main(String[] args) {
 Scanner s = new Scanner(System.in);

Page 400 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Catch-up: some more commands
There are some additional commands that you probably should know to get the most
out of Java. First, you need to learn special commands to convert between numbers
and strings. Your casts still work as expected, but Processing’s commands to do
your string integer conversions do not work here. They have longer versions:

For example:

Here, if you type in a number, it will convert it to an integer and then echo it out. Be
careful, if you type something that is not a number, your program will crash. You will
learn about error handling later.

Similarly, we have:

 System.out.print(PROMPT);
 String input = s.nextLine();
 while (!input.equals(""))
 {
 System.out.println("You typed: "+input);
 System.out.print(PROMPT);
 input = s.nextLine();
 }
 }
}

int Integer.parseInt(String)

import java.util.*;

public class FirstProgram
{
 static final String PROMPT = "Give Input: ";

 static public void main(String[] args) {
 Scanner s = new Scanner(System.in);
 System.out.print(PROMPT);
 String input = s.nextLine();
 int number = Integer.parseInt(input);
 System.out.println("The number is: "+number);
 }
}

Page 401 of 412 jimyoung.ca/learnToProgram © James Young, 2016

and to convert in the other direction:

Scanner also provides quite a few additional features that you should be able to
use. First, take a look at the reference (see earlier in the chapter) and see if you can
find any reasonable commands.

Some of the more common ones involve shortcuts of the above commands: instead
of reading a String and then converting to a numerical format, you can read a number
directly

Scanner gets a little more complex when you start using these commands. It will
grab the next integer, but not necessarily up until the end of the line. For example, if
you type in “15 20” and press enter, nextInt will give you 15.

Of particular power is scanner’s tokenizing functionality, the ability to break a string
down into smaller chunks. For example, it can split a string on space, on comma, or
whatever characters you want. It can look ahead before you convert to avoid crashes,
and so on.

Another useful function of Scanner is that you can read from other sources. Instead
of reading from System.in (the console keyboard), you can also read from files.
Here is an example of reading the first line from a text file:

To get this to work, you also need to import the File class from the io library, at the
top of your program:

Scanner is quite powerful for processing text, but the full use is beyond the scope of

double Double.parseDouble(String)

String Integer.toString(int)
String Double.toString(double)

Scanner s = new Scanner(System.in);
int i = s.nextInt();
double d = s.nextDouble();

Scanner s = new Scanner(new File("myfile.txt"));
String input = s.nextLine();
System.out.println("The first line of the file: "+s);

import java.io.File;

Page 402 of 412 jimyoung.ca/learnToProgram © James Young, 2016

this book. If you end up working with it, it is worth your time to read the reference
pages on it. Two things to keep in mind are:

 Scanner’s commands wait for a whole line of input, even if some commands only
take part of the string

 Scanner will crash on unexpected input, until you learn error control.

 Functions in Java
Applying what you have learned about functions to Java is very easy. First, in Java,
they are called methods, not functions: methods are functions that are attached to
an object. Since everything in Java is an object, then all the functions are methods.

There are only a few small things that you need to learn to get this to work. First,
methods need to be placed inside the class, and not outside of it. It can go before or
after the main method, it doesn’t matter.

The second component is that you need to make your methods fit the object oriented
model. Since you have not learned object oriented programming yet, you do not
have the skills required to make the typical objects on methods. What you want to
do is to make functions that work even without doing your object oriented
programming. To do this, we need to add two keywords to the beginning of your
function definition:

 public: anyone can access this
 static: the method always works, even when not in an instantiated object

Here is an example program. Here, we have a function that gets a line of input from
the user. The function takes a scanner instance, and a prompt, and loops until the
user enters some data:

import java.util.*;

public class FirstProgram
{
static public String getInput(Scanner inputSource,

 String prompt)
{

 String s = "";
 do
 {
 System.out.print(prompt+" ");
 s = inputSource.nextLine();
 } while (s.equals(""));
 return s;

Page 403 of 412 jimyoung.ca/learnToProgram © James Young, 2016

As usual, your functions can take and return any acceptable type in your program.

 Global variables in Java
In processing, you used global variables extensively. This was required, as you had
to remember and maintain state between calls to draw. In regular Java, there are
no global variables in the same way.

You can emulate global variables by making non-final static variables inside the
class and outside the functions, as we did for the finals earlier. However, you should
not use this for now. Later, you will learn about instance variables and how to include
them in your objects. For now, however, you really should get into the habit of
passing everything that is required between your functions, and only using final
constants in the global way. In fact, until you learn how to use them properly, you
may lose marks for doing so.

The reality is that you do not need them for now. Since your main runs once and
only once, and any looping needs to be managed by you, no state has to be
remembered between calls. You can use your own local variables to do it. As you
learn object oriented programming, you’ll see better ways to solve your problems.

 Check your understanding: exercises
You should be able to do all the exercises in this section without major effort. The
actual programming logic itself should fall within what you learned in the course.
Most of the new work falls under the new syntax of working with object-oriented
programming. In addition, you have some basic new commands

}

static public void main(String[] args)
{

 Scanner kbd = new Scanner(System.in);
 String name = getInput(kbd, "What is your name?");
 int age = Integer.parseInt(getInput(kbd,

"What is your age?"));
 String color = getInput(kbd,

"What is your favorite Color?");
 String output = "Hello "+name+" ("+age+" yrs), "+

"your favorite color is "+color+".";
 System.out.println(output);
 }
}

Page 404 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Make a guessing game program, where the computer generates a
random number and the user has to guess it..

a. Make final constants that determine the range that the random number
can fall within, and how many guesses the user has.

b. In the main, call Math.random to generate a random number within the
range.

c. In the main, Print out to the console some text telling them what the range
is, and how many guesses they have.

d. Create a function that takes a prompt, an instantiated Scanner object, and
returns an integer. This function asks the user to give a number, and returns
their input as an integer. It does not do error checking.

e. In the main, use a while loop to…
i. Ask the user to guess
ii. Call your function to get the integer from the user
iii. If the number is larger than the goal, say “too large”, otherwise, say “too

small”
iv. Inform the user how many guesses they have left
v. Loop until the user is out of guesses, or they guess the number correctly.
f. Before the program ends, output the result, the number of used guesses,

the actual number, etc.

 Make a program that works as follows. Create a method called
readData which repeatedly prompts the user to enter an integer value. Values
between 1 and 100 inclusive are “valid,” and your method should print a message
which echoes the value, and indicates that it is valid, as shown below. It should
also keep track of the number of such valid values that were entered. The value
0 is special, and should cause your method to return without printing anything.
Nothing should be printed out in this case. All other values should result in an
error message being printed. When finished, return the number of valid values
that were entered.

a. Make your main call this function, and your program should work as followed:
note that user input is shown in red and underlined, and the final line was
printed by main:

Enter an integer from 1 to 100 (0 to quit):50
Entry 50 accepted.
Enter an integer from 1 to 100 (0 to quit):99
Entry 99 accepted.
Enter an integer from 1 to 100 (0 to quit):123
Invalid entry rejected.
Enter an integer from 1 to 100 (0 to quit):-42

Page 405 of 412 jimyoung.ca/learnToProgram © James Young, 2016

b. Update the program as follows: readData should accept a parameter of time

int[], where it should now store all the valid values. It should make sure
that the array has enough room to store the next value, and if not, print an
error message stating that there is not enough room.

Create a method printArray(int[] a, int n) which prints the first n
elements in the array, in the format shown below. The numbers should be
separated by commas, but there should be no comma after the last one.
There should be no blanks.

Write a method double average(int[] a, int n) which will calculate
and return the average of the first n items in a. Ve careful to return an accurate
value calculated as a double, not as an int.

Modify main to create an array that can hold up to 100 values. Use readData
to populate the array, and then use printArray and average to generate
your output.

Here is an example:

Invalid entry rejected.
Enter an integer from 1 to 100 (0 to quit):1
Entry 1 accepted.
Enter an integer from 1 to 100 (0 to quit):0
3 valid entries were read in.

Enter an integer from 1 to 100 (0 to quit):50
Entry 50 accepted.
Enter an integer from 1 to 100 (0 to quit):99
Entry 99 accepted.
Enter an integer from 1 to 100 (0 to quit):203
Invalid entry rejected.
Enter an integer from 1 to 100 (0 to quit):14
Entry 14 accepted.
Enter an integer from 1 to 100 (0 to quit):0
3 valid entries were read in:
50,99,14
Their average is 54.333333333333336

Page 406 of 412 jimyoung.ca/learnToProgram © James Young, 2016

 Make a program that has the following methods:
int[] getUserData() – This method first asks the user how many integers
they will provide. It then creates a new array with that many bins, and uses a loop
to ask the user to provide integers for those bins. The method returns a reference
to the array, that is now fully populated.

int[] filterArray(int[] data, int min, int max) – This method
takes an array that is fully populated with data, and generates a new array that
is filtered. The new array only contains elements from the first array that fall within
min and max inclusive. One way to do this is to do two passes of the array: one
to count the number of bins that will be needed. Then create the new array, and
use a second pass to populate the new array. The new array is fully populated.
Return a reference to the new array.

String[] mapMagnitude(int[] data) – This method takes an array of
integers, and maps the values to strings representing the magnitude of the value.
These strings should be stored into a new array with the same length as data,
with the values corresponding. For example, bin i in the new array should
correspond to bin i in the data array. Values from 0...9 should give “one”,
10...99 should give “ten”, 100…999 should give “one hundred”, …,
1,000,000…9,999,999 should give “million”, and so on. Negative values all
should give “negative”. Use your knowledge of the possible range of the integer
type to determine how large to go.

In addition, create printIntArray and printStringArray to help you see
the results.

Your main should call getUserData to get an input array, and then call both the
filtering and mapping methods with the data, and your printing methods to test
your result.

 As you learned in the course, binary search requires that data is
sorted. However, when you get data from a user, how can you guarantee that it
is sorted? You will make a method called insertSort that adds an element to
an array, guaranteeing that the resulting array is sorted.

This will use partially-filled arrays, as your method will need to know how many
bins of the array so far are filled with data (and assumed to be sorted). As such,
your method header will be as follows:

int insertSort(int[] data, int size, int newElem). This method
assumes that data is already sorted, and has size elements. It will insert
newElem into the array, such that the size is one larger, and the array is now

Page 407 of 412 jimyoung.ca/learnToProgram © James Young, 2016

sorted. The new partially-filled size of the array is returned. The algorithm works
as follows:

 When size is zero, the new element is placed in the first bin as the only element
 Otherwise, use a loop to go through the first size elements of the array, with a

variable toInsert initially set to newElem, the data to insert.
 If the data at bin i is less than toInsert, do nothing, since toInsert

belongs to the right of this position.
 If the data at bin i is larger than toInsert, then swap toInsert with the

value currently at the bin. That is, insert our new value here, and then take
the existing data out, and see where it belongs next.

 The above two checks are sufficient. Once the correct location is found, then the
remaining elements bubble to the right.

Make a program that uses a while loop to prompt the user for numbers, and
your new method to place them in an array. Print out the array as you go to ensure
that it is always sorted as you add data.

A great source for basic Java practice is the University of Manitoba’s list of historical
programming contest questions for the high-school level. These, particularly the
easier ones, should be manageable (with some work) by students at this level.

http://cs.umanitoba.ca/highschool/past-contests.php

http://www.cs.umanitoba.ca/~acmpc/past/

Page 408 of 412 jimyoung.ca/learnToProgram © James Young, 2016

(this page intentionally left blank)

